Search for blocks/addresses/...
Proofgold Asset
asset id
375765d3136bd3cd2e76a10ace9971fe78b0a21b29f5126332c0dec57e986f4e
asset hash
985e17aeba9ce7a65e058c8fa95290949fb60f9ec51179819e13470d3328e0ac
bday / block
30499
tx
de20d..
preasset
doc published by
Pr5Zc..
Known
60e4a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
=
x1
x3
(
x1
x4
(
x1
x2
x5
)
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
b3e62..
equiv_nat_mod
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
x2
∈
omega
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x0
(
mul_nat
x4
x2
)
=
x1
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x1
(
mul_nat
x4
x2
)
=
x0
)
⟶
x3
)
⟶
x3
)
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_2
nat_2
:
nat_p
2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
nat_4
nat_4
:
nat_p
4
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
c3da7..
:
mul_nat
2
2
=
4
Known
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
Theorem
c14f2..
:
not
(
prime_nat
4
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
d8085..
:
∀ x0 x1 .
nat_p
x1
⟶
x0
∈
ordsucc
(
add_nat
x0
x1
)
(proof)
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
46720..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
add_nat
x0
x1
⊆
x0
⟶
x1
=
0
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
ab486..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
=
add_nat
x0
x1
⟶
x1
=
0
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
f3fbb..
mul_nat_0_inv
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
0
⟶
or
(
x0
=
0
)
(
x1
=
0
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
92637..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
x0
x0
=
x0
⟶
or
(
x0
=
0
)
(
x0
=
1
)
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Known
63881..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
mul_nat
x0
x1
)
(
setprod
x2
x3
)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
In_0_1
In_0_1
:
0
∈
1
Param
ap
ap
:
ι
→
ι
→
ι
Known
Pi_ext
Pi_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
∀ x3 .
x3
∈
Pi
x0
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
ap
x2
x4
=
ap
x3
x4
)
⟶
x2
=
x3
Param
pair_p
pair_p
:
ι
→
ο
Known
PiI
PiI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
⟶
x2
∈
Pi
x0
x1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Theorem
1032b..
:
∀ x0 .
equip
(
setexp
x0
0
)
1
(proof)
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
856b4..
exp_nat_0
:
∀ x0 .
exp_nat
x0
0
=
1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
caaf4..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_nat
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
exp_nat
x0
x1
)
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
tuple_2_inj
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Theorem
17a87..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
equip
(
exp_nat
x0
x1
)
(
setexp
x0
x1
)
(proof)
Param
even_nat
even_nat
:
ι
→
ο
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
even_nat_0
even_nat_0
:
even_nat
0
Definition
odd_nat
odd_nat
:=
λ x0 .
and
(
x0
∈
omega
)
(
∀ x1 .
x1
∈
omega
⟶
x0
=
mul_nat
2
x1
⟶
∀ x2 : ο .
x2
)
Known
odd_nat_even_nat_S
odd_nat_even_nat_S
:
∀ x0 .
odd_nat
x0
⟶
even_nat
(
ordsucc
x0
)
Known
even_nat_odd_nat_S
even_nat_odd_nat_S
:
∀ x0 .
even_nat
x0
⟶
odd_nat
(
ordsucc
x0
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
63511..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
x0
x1
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
(
x2
x3
)
=
x3
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
even_nat
x0
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
even_nat_not_odd_nat
even_nat_not_odd_nat
:
∀ x0 .
even_nat
x0
⟶
not
(
odd_nat
x0
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
d3cb5..
:
∀ x0 x1 .
odd_nat
x1
⟶
equip
x0
x1
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
x4
=
x4
)
⟶
x3
)
⟶
x3
(proof)
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
74e07..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
x0
x1
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
(
x2
x3
)
=
x3
)
⟶
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
and
(
x2
x4
=
x4
)
(
∀ x5 .
x5
∈
x1
⟶
x2
x5
=
x5
⟶
x4
=
x5
)
)
⟶
x3
)
⟶
x3
)
⟶
odd_nat
x0
(proof)
Param
SNo
SNo
:
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Theorem
24b4c..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
x0
(
mul_SNo
x1
(
mul_SNo
x2
x3
)
)
=
mul_SNo
x1
(
mul_SNo
x2
(
mul_SNo
x0
x3
)
)
(proof)
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
SNo_1
SNo_1
:
SNo
1
Theorem
e032f..
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x2
x0
)
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
547c4..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
(
x1
x3
(
x1
x4
x5
)
)
x6
=
x1
(
x2
x3
x6
)
(
x1
(
x2
x4
x6
)
(
x2
x5
x6
)
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Theorem
7bd74..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
x3
=
add_SNo
(
mul_SNo
x0
x3
)
(
add_SNo
(
mul_SNo
x1
x3
)
(
mul_SNo
x2
x3
)
)
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
In_1_4
In_1_4
:
1
∈
4
Theorem
c188a..
:
SNoLt
1
4
(proof)