Search for blocks/addresses/...
Proofgold Asset
asset id
9a6f9cecd3ff901d8444bd194b554c263d1fad5d36fa50176df4f090e77d7e7f
asset hash
0b5a7046d1881b97fc94743b3474801fbe731b82fce7af1ab23f704ebb3becbe
bday / block
35130
tx
1bcd7..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
e5f78..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 x5 x6 :
ι → ο
.
∀ x7 :
ι → ι
.
∀ x8 :
ι →
ι →
ι → ι
.
∀ x9 :
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι → ι
.
∀ x12 x13 :
ι → ο
.
∀ x14 :
ι →
ι → ι
.
∀ x15 x16 .
∀ x17 :
ι →
ι →
ι → ο
.
∀ x18 :
ι → ο
.
∀ x19 .
∀ x20 :
ι → ο
.
∀ x21 x22 x23 .
∀ x24 :
ι → ο
.
∀ x25 x26 x27 .
∀ x28 x29 :
ι →
ι → ι
.
∀ x30 :
ι →
ι → ο
.
∀ x31 :
ι → ο
.
∀ x32 :
ι → ι
.
∀ x33 x34 x35 .
∀ x36 :
ι → ο
.
∀ x37 .
∀ x38 :
ι →
ι → ι
.
∀ x39 :
ι → ο
.
∀ x40 x41 x42 x43 .
∀ x44 x45 :
ι → ο
.
∀ x46 x47 x48 .
∀ x49 :
ι → ι
.
∀ x50 :
ι → ο
.
∀ x51 x52 :
ι → ι
.
∀ x53 :
ι → ο
.
∀ x54 :
ι → ι
.
∀ x55 :
ι →
ι → ο
.
∀ x56 .
∀ x57 x58 :
ι → ο
.
∀ x59 x60 .
∀ x61 :
ι →
ι → ο
.
∀ x62 .
∀ x63 :
ι → ο
.
(
∀ x64 x65 .
x63
x65
⟶
(
x65
=
x64
⟶
False
)
⟶
x63
x64
⟶
False
)
⟶
(
∀ x64 x65 .
x0
x64
x65
⟶
x63
x65
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x0
x64
x65
⟶
x2
x65
(
x1
x66
)
⟶
x63
x66
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x0
x65
x66
⟶
x2
x66
(
x1
x64
)
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x3
x66
⟶
x3
x64
⟶
x4
x66
⟶
(
x66
=
x62
⟶
False
)
⟶
x5
x65
⟶
x13
x65
⟶
x6
x65
⟶
x12
x65
⟶
x7
x65
=
x66
⟶
x9
x65
(
x8
x65
x64
x66
)
=
x11
x64
(
x8
x65
x64
x66
)
⟶
(
x11
x64
x66
=
x10
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x3
x66
⟶
x3
x64
⟶
x4
x66
⟶
(
x66
=
x62
⟶
False
)
⟶
x5
x65
⟶
x13
x65
⟶
x6
x65
⟶
x12
x65
⟶
x7
x65
=
x66
⟶
(
x0
(
x8
x65
x64
x66
)
x66
⟶
False
)
⟶
(
x11
x64
x66
=
x10
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x3
x66
⟶
x3
x64
⟶
x4
x66
⟶
(
x66
=
x62
⟶
False
)
⟶
x5
x65
⟶
x13
x65
⟶
x6
x65
⟶
x12
x65
⟶
x7
x65
=
x66
⟶
(
x3
(
x8
x65
x64
x66
)
⟶
False
)
⟶
(
x11
x64
x66
=
x10
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
x64
⟶
(
x2
x65
(
x1
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
(
x1
x64
)
⟶
(
x61
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x64
x65
⟶
(
x63
x65
⟶
False
)
⟶
(
x0
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x13
x65
⟶
x6
x65
⟶
x13
x64
⟶
x6
x64
⟶
x7
x65
=
x7
x64
⟶
x9
x65
(
x14
x64
x65
)
=
x9
x64
(
x14
x64
x65
)
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x13
x65
⟶
x6
x65
⟶
x13
x64
⟶
x6
x64
⟶
x7
x65
=
x7
x64
⟶
(
x0
(
x14
x64
x65
)
(
x7
x65
)
⟶
False
)
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x0
x65
x64
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
(
x2
x62
x60
⟶
False
)
⟶
False
)
⟶
(
(
x2
x16
x15
⟶
False
)
⟶
False
)
⟶
(
(
x2
x16
x59
⟶
False
)
⟶
False
)
⟶
(
(
x17
x16
x15
x59
⟶
False
)
⟶
False
)
⟶
(
(
x58
x16
⟶
False
)
⟶
False
)
⟶
(
x63
x16
⟶
False
)
⟶
(
∀ x64 .
(
x61
x64
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x2
x65
x64
⟶
(
x17
x65
x66
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x17
x65
x66
x64
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
(
x59
=
x60
⟶
False
)
⟶
False
)
⟶
(
(
x57
x56
⟶
False
)
⟶
False
)
⟶
(
x63
x56
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
(
x55
(
x54
x64
)
x16
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
(
x2
(
x54
x64
)
(
x1
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x53
x64
⟶
(
x55
(
x52
x64
)
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x53
x64
⟶
(
x6
(
x52
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x53
x64
⟶
(
x13
(
x52
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x18
x19
⟶
False
)
⟶
False
)
⟶
(
x63
x19
⟶
False
)
⟶
(
x20
x21
⟶
False
)
⟶
(
(
x6
x21
⟶
False
)
⟶
False
)
⟶
(
(
x13
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x53
x64
⟶
(
x55
(
x51
x64
)
x64
⟶
False
)
⟶
False
)
⟶
(
(
x18
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x50
x64
⟶
False
)
⟶
x50
(
x49
x64
)
⟶
False
)
⟶
(
∀ x64 .
(
x50
x64
⟶
False
)
⟶
(
x2
(
x49
x64
)
(
x1
x64
)
⟶
False
)
⟶
False
)
⟶
(
x50
x48
⟶
False
)
⟶
(
x63
x23
⟶
False
)
⟶
(
(
x12
x47
⟶
False
)
⟶
False
)
⟶
(
(
x6
x47
⟶
False
)
⟶
False
)
⟶
(
(
x13
x47
⟶
False
)
⟶
False
)
⟶
(
(
x5
x47
⟶
False
)
⟶
False
)
⟶
(
(
x3
x46
⟶
False
)
⟶
False
)
⟶
(
(
x24
x46
⟶
False
)
⟶
False
)
⟶
(
(
x45
x46
⟶
False
)
⟶
False
)
⟶
(
x63
x46
⟶
False
)
⟶
(
(
x44
x43
⟶
False
)
⟶
False
)
⟶
(
(
x6
x43
⟶
False
)
⟶
False
)
⟶
(
(
x13
x43
⟶
False
)
⟶
False
)
⟶
(
(
x53
x25
⟶
False
)
⟶
False
)
⟶
(
(
x50
x25
⟶
False
)
⟶
False
)
⟶
(
(
x3
x25
⟶
False
)
⟶
False
)
⟶
(
(
x24
x25
⟶
False
)
⟶
False
)
⟶
(
(
x45
x25
⟶
False
)
⟶
False
)
⟶
(
(
x63
x42
⟶
False
)
⟶
False
)
⟶
(
(
x4
x26
⟶
False
)
⟶
False
)
⟶
(
(
x3
x26
⟶
False
)
⟶
False
)
⟶
(
(
x24
x26
⟶
False
)
⟶
False
)
⟶
(
(
x45
x26
⟶
False
)
⟶
False
)
⟶
(
(
x3
x27
⟶
False
)
⟶
False
)
⟶
(
(
x6
x41
⟶
False
)
⟶
False
)
⟶
(
(
x13
x41
⟶
False
)
⟶
False
)
⟶
(
(
x53
x40
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x30
(
x29
x64
x65
)
(
x28
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x3
(
x29
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x3
x66
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
x3
x65
⟶
x0
x65
x64
⟶
(
x9
(
x28
x64
x66
)
x65
=
x11
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x7
(
x28
x64
x65
)
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x12
(
x28
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x6
(
x28
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x5
(
x28
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
x4
x64
⟶
(
x13
(
x28
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x50
x64
⟶
False
)
⟶
x50
(
x1
x64
)
⟶
False
)
⟶
(
x50
x60
⟶
False
)
⟶
(
(
x3
x60
⟶
False
)
⟶
False
)
⟶
(
x63
x60
⟶
False
)
⟶
(
(
x31
x60
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x6
x64
⟶
x5
x64
⟶
(
x3
(
x7
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x53
x60
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x5
x65
⟶
x13
x65
⟶
x6
x65
⟶
x12
x65
⟶
x3
x64
⟶
(
x3
(
x9
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x63
x62
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x39
x64
⟶
False
)
⟶
x13
x64
⟶
x6
x64
⟶
x39
(
x7
x64
)
⟶
False
)
⟶
(
∀ x64 x65 .
x53
x65
⟶
x13
x64
⟶
x6
x64
⟶
x55
x64
x65
⟶
(
x55
(
x7
x64
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x63
x65
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x65
)
⟶
(
x17
(
x38
x64
x65
)
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x2
(
x32
x64
)
x64
⟶
False
)
⟶
False
)
⟶
(
(
x63
x37
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x17
x65
x66
x64
⟶
(
x2
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x5
x64
⟶
x13
x64
⟶
x6
x64
⟶
x12
x64
⟶
(
x3
(
x10
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x59
(
x1
x15
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x3
x64
⟶
(
x3
(
x11
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x62
=
x37
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x5
x66
⟶
x13
x66
⟶
x6
x66
⟶
x12
x66
⟶
x3
x65
⟶
x30
x65
x66
⟶
x3
x64
⟶
x30
x64
x66
⟶
(
x64
=
x10
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x5
x66
⟶
x13
x66
⟶
x6
x66
⟶
x12
x66
⟶
x3
x65
⟶
x30
x65
x66
⟶
x3
x64
⟶
x64
=
x10
x66
⟶
(
x30
x64
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x36
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x2
x64
(
x1
x65
)
⟶
(
x57
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x55
x64
x16
⟶
(
x39
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x55
x64
x16
⟶
x63
x64
⟶
False
)
⟶
(
∀ x64 .
x2
x64
x60
⟶
(
x18
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x2
x64
x65
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x2
x64
x65
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x55
x64
x62
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x18
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x57
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x55
x64
x62
⟶
(
x63
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x18
x64
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x39
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x20
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x39
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x39
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x3
x64
⟶
x50
x64
⟶
(
x18
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x2
x64
x65
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x6
x64
⟶
(
x20
x64
⟶
False
)
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x6
x64
⟶
(
x20
x64
⟶
False
)
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x6
x64
⟶
(
x20
x64
⟶
False
)
⟶
x39
x64
⟶
False
)
⟶
(
∀ x64 .
x18
x64
⟶
(
x50
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x5
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x20
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x2
x64
x60
⟶
(
x50
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x13
x65
⟶
x6
x65
⟶
x2
x64
(
x1
x65
)
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x18
x64
⟶
(
x53
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
⟶
x2
x64
x65
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x45
x64
⟶
x24
x64
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x44
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x6
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x53
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x3
x64
⟶
(
x24
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x3
x64
⟶
(
x45
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x6
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x53
x64
⟶
(
x3
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x36
x65
⟶
x2
x64
(
x1
x65
)
⟶
(
x36
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x39
x64
⟶
(
x55
x64
x16
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x0
x64
x65
⟶
x0
x65
x64
⟶
False
)
⟶
(
x30
(
x11
x33
x34
)
x35
⟶
False
)
⟶
(
∀ x64 .
x3
x64
⟶
x0
x64
x34
⟶
(
x9
x35
x64
=
x11
x33
x64
⟶
False
)
⟶
False
)
⟶
(
(
x7
x35
=
x34
⟶
False
)
⟶
False
)
⟶
(
(
x12
x35
⟶
False
)
⟶
False
)
⟶
(
(
x6
x35
⟶
False
)
⟶
False
)
⟶
(
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
(
x13
x35
⟶
False
)
⟶
False
)
⟶
(
x34
=
x62
⟶
False
)
⟶
(
(
x4
x34
⟶
False
)
⟶
False
)
⟶
(
(
x3
x33
⟶
False
)
⟶
False
)
⟶
(
(
x3
x34
⟶
False
)
⟶
False
)
⟶
False
(proof)