Search for blocks/addresses/...
Proofgold Asset
asset id
9c05db48ccb91f22cac619a52845c7b0a3f9d6b1cbb35410da74612e023cec7b
asset hash
3e3edfb1486747b9155cf5abc27d23959dd43c5ba255787c1648986258fbf404
bday / block
15546
tx
0cb0d..
preasset
doc published by
Pr4zB..
Definition
ChurchNum2
:=
λ x0 :
ι → ι
.
λ x1 .
x0
(
x0
x1
)
Definition
ChurchNum_ii_2
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
x1
)
Definition
ChurchNum_ii_3
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
x1
)
)
Definition
ChurchNum_ii_4
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
x1
)
)
)
Definition
ChurchNum_ii_5
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
Definition
ChurchNum_ii_6
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
Definition
ChurchNum_ii_7
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
)
Definition
ChurchNum_ii_8
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
)
)
Theorem
1b77a..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum2
x0
x2
)
(proof)
Theorem
7df32..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_2
ChurchNum2
x0
x2
)
(proof)
Theorem
9ba2f..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_3
ChurchNum2
x0
x2
)
(proof)
Theorem
8c01a..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_4
ChurchNum2
x0
x2
)
(proof)
Theorem
80fa6..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_5
ChurchNum2
x0
x2
)
(proof)
Theorem
b8288..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_6
ChurchNum2
x0
x2
)
(proof)
Theorem
90a58..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_7
ChurchNum2
x0
x2
)
(proof)
Theorem
7f821..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_8
ChurchNum2
x0
x2
)
(proof)
Theorem
a5a30..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum2
x0
x2
)
(proof)
Theorem
52b00..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_2
ChurchNum2
x0
x2
)
(proof)
Theorem
078b0..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_3
ChurchNum2
x0
x2
)
(proof)
Theorem
3ae46..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_4
ChurchNum2
x0
x2
)
(proof)
Theorem
9821b..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_5
ChurchNum2
x0
x2
)
(proof)
Theorem
f3785..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_6
ChurchNum2
x0
x2
)
(proof)
Theorem
c3586..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_7
ChurchNum2
x0
x2
)
(proof)
Theorem
29be5..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_8
ChurchNum2
x0
x2
)
(proof)
Theorem
39a30..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum2
x0
x3
)
=
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
fb78a..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_2
ChurchNum2
x0
x3
)
=
ChurchNum_ii_2
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
69b84..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_3
ChurchNum2
x0
x3
)
=
ChurchNum_ii_3
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
218e1..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_4
ChurchNum2
x0
x3
)
=
ChurchNum_ii_4
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
93d19..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_5
ChurchNum2
x0
x3
)
=
ChurchNum_ii_5
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
73d5c..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_6
ChurchNum2
x0
x3
)
=
ChurchNum_ii_6
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
ff06e..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_7
ChurchNum2
x0
x3
)
=
ChurchNum_ii_7
ChurchNum2
x0
(
x2
x3
)
(proof)
Theorem
e3c69..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_8
ChurchNum2
x0
x3
)
=
ChurchNum_ii_8
ChurchNum2
x0
(
x2
x3
)
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
nat_0
nat_0
:
nat_p
0
Theorem
5a366..
:
nat_p
64
(proof)
Theorem
5eca6..
:
nat_p
128
(proof)
Theorem
28496..
:
nat_p
256
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
exp_nat
exp_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_nat
x0
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
856b4..
exp_nat_0
:
∀ x0 .
exp_nat
x0
0
=
1
(proof)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
caaf4..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_nat
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
exp_nat
x0
x1
)
(proof)
Theorem
e29a8..
:
exp_nat
2
0
=
1
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_1_1_2
add_nat_1_1_2
:
add_nat
1
1
=
2
Known
mul_add_nat_distrR
mul_add_nat_distrR
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
add_nat
x0
x1
)
x2
=
add_nat
(
mul_nat
x0
x2
)
(
mul_nat
x1
x2
)
Known
nat_1
nat_1
:
nat_p
1
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
f11bb..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
1
x0
=
x0
Theorem
afaae..
:
∀ x0 .
nat_p
x0
⟶
exp_nat
2
(
ordsucc
x0
)
=
add_nat
(
exp_nat
2
x0
)
(
exp_nat
2
x0
)
(proof)
Known
3e9f7..
exp_nat_1
:
∀ x0 .
exp_nat
x0
1
=
x0
Theorem
16f52..
:
exp_nat
2
1
=
2
(proof)
Known
a8f07..
:
exp_nat
2
2
=
4
Theorem
5e733..
:
exp_nat
2
2
=
ChurchNum_ii_2
ChurchNum2
ordsucc
0
(proof)
Known
adab1..
:
exp_nat
2
3
=
8
Theorem
db234..
:
exp_nat
2
3
=
ChurchNum_ii_3
ChurchNum2
ordsucc
0
(proof)
Known
db1de..
:
exp_nat
2
4
=
16
Theorem
bcc97..
:
exp_nat
2
4
=
ChurchNum_ii_4
ChurchNum2
ordsucc
0
(proof)
Known
e089c..
:
exp_nat
2
5
=
32
Theorem
85ed8..
:
exp_nat
2
5
=
ChurchNum_ii_5
ChurchNum2
ordsucc
0
(proof)
Known
nat_5
nat_5
:
nat_p
5
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
b3a97..
:
exp_nat
2
6
=
ChurchNum_ii_6
ChurchNum2
ordsucc
0
(proof)
Theorem
337ce..
:
exp_nat
2
6
=
64
(proof)
Known
nat_6
nat_6
:
nat_p
6
Theorem
cc1c2..
:
exp_nat
2
7
=
ChurchNum_ii_7
ChurchNum2
ordsucc
0
(proof)
Theorem
ab619..
:
exp_nat
2
7
=
128
(proof)
Known
nat_7
nat_7
:
nat_p
7
Theorem
bbc1b..
:
exp_nat
2
8
=
ChurchNum_ii_8
ChurchNum2
ordsucc
0
(proof)
Theorem
55cf1..
:
exp_nat
2
8
=
256
(proof)