Search for blocks/addresses/...
Proofgold Asset
asset id
9e68f1f516cd93da5963967728bee16139878a0fca41ff90f21b4e457bd78c95
asset hash
d8aa13308fb195e52936cf031f19093c5f321e786996ee77f8c14997972ca872
bday / block
39320
tx
39eea..
preasset
doc published by
Pr4zB..
Param
4006a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
fc090..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
07c0f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
0076f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
adf05..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d5d69..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
3f98b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
96c31..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
54c7d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
130d9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4e6fe..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a62c3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ceccf..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
eb506..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
70755..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
97793..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
aa64f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
83aec..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
446f4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
eecee..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4006a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
fc090..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
07c0f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
0076f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
adf05..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
d5d69..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
3f98b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
96c31..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
54c7d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
130d9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4e6fe..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a62c3..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ceccf..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
eb506..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
70755..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
97793..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
aa64f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
83aec..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
446f4..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
ba015..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
286f8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2c550..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f842a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e9fc9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
010eb..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
fa0f3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c7001..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
58722..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
84d91..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
90d0e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
81d98..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
967cf..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ba015..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
07c0f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
0076f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
286f8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2c550..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f842a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e9fc9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
010eb..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
130d9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4e6fe..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
fa0f3..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a62c3..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
c7001..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
58722..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
84d91..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
90d0e..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ceccf..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
81d98..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
70755..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
30a11..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
076b3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
3d3e7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
14be0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4e91d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
23b40..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1a9fd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e2ec9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c480f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
0db75..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
02471..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1cf57..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
23926..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b19dd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2eb4b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
bce5f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
73f36..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
94ee4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
0ee54..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
30a11..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
076b3..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
3d3e7..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
14be0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4e91d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
23b40..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
1a9fd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e2ec9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
c480f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
0db75..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
02471..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
1cf57..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
23926..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b19dd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2eb4b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
bce5f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
73f36..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
94ee4..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
811c0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
96162..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
0768d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
70a3c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2122d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
39c17..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ee5b5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
61b2a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
abda1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
858d1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
a7092..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
811c0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
96162..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4e91d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
c480f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
0db75..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
02471..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
0768d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
70a3c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2122d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
39c17..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ee5b5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
61b2a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2eb4b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
bce5f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
abda1..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
73f36..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
94ee4..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
858d1..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
22b3a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
723e0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1ecf8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
915dd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
58208..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b571f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
7e5de..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a3794..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
093ca..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
34ae8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
65996..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
45286..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b7a83..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
72d65..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b7e1a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4b4dd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f4940..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
b2a9d..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
22b3a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
723e0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
1ecf8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
915dd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
58208..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b571f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
7e5de..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a3794..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
093ca..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
34ae8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
65996..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
45286..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b7a83..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
72d65..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b7e1a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4b4dd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f4940..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
682ac..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
5f6ee..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a2b8b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e2fd7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
05a8c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f5da9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
de118..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b43ab..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
627df..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c2e8a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
aa358..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
093ad..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
bacd8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2bb2a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
baafa..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
682ac..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
5f6ee..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a2b8b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e2fd7..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
05a8c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f5da9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
de118..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b43ab..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
627df..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
c2e8a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
aa358..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
093ad..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
bacd8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2bb2a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
803e1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f9a67..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
76a6c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
7f17b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
cc7e8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
3a6bc..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ad740..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
9aef0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
30182..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d2a2c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a94a5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
92dea..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8be9f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4e4f8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
4a24e..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
803e1..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f9a67..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
76a6c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
7f17b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
cc7e8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
3a6bc..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ad740..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
9aef0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
30182..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
d2a2c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a94a5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
92dea..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
8be9f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
4e4f8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
37e04..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f7902..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ab042..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a2064..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8c9ed..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ee649..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
61fc8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ed012..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d68bd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d0e1f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1e021..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
989b4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
d8424..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
37e04..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f7902..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ab042..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a2064..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
8c9ed..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ee649..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
61fc8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ed012..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
d68bd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
d0e1f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
1e021..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
989b4..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
6e051..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d92ce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e5063..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
228c9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a3e51..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c705c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
38793..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e13e5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ef237..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
3c50c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
b45a2..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
6e051..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
d92ce..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
61fc8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ed012..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e5063..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
228c9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a3e51..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
c705c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
38793..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e13e5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ef237..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
3c50c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
7cafd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
72e0a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a4abc..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a40ae..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b1702..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f444d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
55a3e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8c70b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
17819..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
53f52..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
07fce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
86fe8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
41e30..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
7cafd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
72e0a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a4abc..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a40ae..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b1702..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f444d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
55a3e..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
8c70b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
17819..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
53f52..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
07fce..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
86fe8..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
fb47b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
055d9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
13b7c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2bf4d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
cf078..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a0d70..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2e1d5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
729bd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e1aab..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
241b0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8fbce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
6661c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
71717..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
fb47b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
055d9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
13b7c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2bf4d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
cf078..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a0d70..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
2e1d5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
729bd..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e1aab..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
241b0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
8fbce..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
6661c..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
a9907..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
824ef..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8f55d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
22bb5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
654b9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
53286..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b8d2a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e5024..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f0823..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
ac29e..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
a9907..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
824ef..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
8f55d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
22bb5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
654b9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
53286..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
b8d2a..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
e5024..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
f0823..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
62e18..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
49901..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
dc830..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ed1c7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
df50d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
176ba..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
9f93b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
91ca0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
23b03..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
00b44..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
62e18..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
49901..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
dc830..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ed1c7..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
df50d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
176ba..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
9f93b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
91ca0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
23b03..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
x2
)
⟶
x2
Param
496a0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2ffc8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e8ba7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b4c31..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1a9c5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
bfd4f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d0980..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
bc2c6..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
06d7e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b0749..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
87273..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b0e38..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f3db6..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
21189..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d0e7c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f630d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
9a66e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
93f0f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2dac5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
3fca5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ef324..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c4d5c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
dcb32..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d3618..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
dbf71..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e37fb..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
78a44..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
af5b6..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a7e88..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
59632..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
79ee1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f6312..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
fa2d0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
dd43e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4818f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4d3d7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
a1497..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4086f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
44916..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
8acce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
b47d4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
74622..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
0788d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
fa661..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
255f4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
c8a3f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2bad0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d2e51..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
76e3a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
9eede..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ba960..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
74a95..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
59a16..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
94f0c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
923e2..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
1b69c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
cec27..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
889b5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
71ae3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
df026..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
6bc75..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
43a9d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
5bab1..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Known
70d6f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
4006a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5e8a4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
fc090..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
629c2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
07c0f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
58605..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
0076f..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
x13
Known
176e1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
adf05..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
13c6c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d5d69..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
158a2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
3f98b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
0a416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
96c31..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3d567..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
54c7d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
be036..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
130d9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6110e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
4e6fe..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
1b89c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a62c3..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
bf274..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ceccf..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
d3d64..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
eb506..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
79b20..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
70755..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
86d7f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
97793..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
4ee2c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
aa64f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
53ca8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
83aec..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
7cfa2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
446f4..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
d1f46..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
eecee..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
5f7f8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ba015..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3bdc3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
286f8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
b5e39..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2c550..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
b5546..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f842a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
fbeda..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e9fc9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
d4e03..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
010eb..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
2bcde..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
fa0f3..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3701a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
c7001..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c6ec1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
58722..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
43aa1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
84d91..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
f056c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
90d0e..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cc277..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
81d98..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
aed67..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
967cf..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
93821..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
30a11..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c0ca2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
076b3..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
30b69..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
3d3e7..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8896c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
14be0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5fe79..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
4e91d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
73125..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
23b40..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
501e3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
1a9fd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
dda92..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e2ec9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
890d1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
c480f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6c8b0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
0db75..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
7b02f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
02471..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
01e8a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
1cf57..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6ef3d..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
23926..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
x13
Known
33589..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b19dd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
610e2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2eb4b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3603f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
bce5f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c97cd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
73f36..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
03628..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
94ee4..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
53b4c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
0ee54..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
d9493..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
811c0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
2ab05..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
96162..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8311a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
0768d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5c6d8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
70a3c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8dd80..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2122d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
4eecf..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
39c17..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
45a6b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ee5b5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
1a30f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
61b2a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
60271..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
abda1..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
10aef..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
858d1..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
2a49e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
a7092..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
48184..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
22b3a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c2b39..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
723e0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
2609f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
1ecf8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
601fe..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
915dd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ee62a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
58208..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
7751a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b571f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
bfd15..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
7e5de..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
49425..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a3794..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
f59a2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
093ca..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
a215a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
34ae8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
fbefa..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
65996..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3128c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
45286..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c85e7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b7a83..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8ac5c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
72d65..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
a2a87..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b7e1a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
25eec..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
4b4dd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
e1218..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f4940..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
ae354..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
b2a9d..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
7c684..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
682ac..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cd34a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
5f6ee..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
abb14..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a2b8b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5b367..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e2fd7..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
eb730..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
05a8c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
34f71..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f5da9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
76878..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
de118..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
10e7e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b43ab..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
b611a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
627df..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
20343..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
c2e8a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
33bd7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
aa358..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
bdaf9..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
093ad..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6b571..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
bacd8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
b257d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2bb2a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
c9b7d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
baafa..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
bec8c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
803e1..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cfa25..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
f9a67..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
x13
Known
71413..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
76a6c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
dabf4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
7f17b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
37e36..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
cc7e8..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
x13
Known
e4093..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
3a6bc..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
09b2e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ad740..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
e2fb1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
9aef0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
9f530..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
30182..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
e8ce3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d2a2c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ec1a1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a94a5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
858e2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
92dea..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ba3e4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
8be9f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3a6fa..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
4e4f8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
2bc58..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
4a24e..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
9efdc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
37e04..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
2b542..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f7902..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
dba82..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ab042..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
65889..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a2064..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cbc05..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
8c9ed..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
9ae9f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ee649..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
29dfb..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
61fc8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
79a4a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ed012..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
fd91f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d68bd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
9ce00..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d0e1f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
d030a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
1e021..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c4aa8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
989b4..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
0733b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
d8424..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
2d870..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
6e051..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5e6fc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d92ce..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
909ba..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e5063..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ee588..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
228c9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
586ac..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a3e51..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
12ea2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
c705c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c2878..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
38793..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
08dcf..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e13e5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
39b5d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ef237..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
232fb..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
3c50c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
4b75a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
b45a2..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
2c539..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
7cafd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5d08d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
72e0a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
96398..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a4abc..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
75d70..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a40ae..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ff971..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b1702..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
5d299..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f444d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
53960..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
55a3e..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c89cc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
8c70b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
c0798..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
17819..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
58d86..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
53f52..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
b5648..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
07fce..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
35f3a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
86fe8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
728cd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
41e30..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
d9009..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
fb47b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ef619..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
055d9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cf092..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
13b7c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
275da..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2bf4d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
366b5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
cf078..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6bfe2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a0d70..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
17f14..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2e1d5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
a13e6..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
729bd..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
3104d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e1aab..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
0bc50..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
241b0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
a0ecc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
8fbce..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
4fc57..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
6661c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
62d9a..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
71717..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
73bf7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
a9907..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
f116f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
824ef..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
6f2ec..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
8f55d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
2e3f7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
22bb5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8513d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
654b9..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
bdbea..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
53286..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
a72a1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b8d2a..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
684fa..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e5024..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
ad3e5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
f0823..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
25794..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
ac29e..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
7a927..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
62e18..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
4de8c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
49901..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
64b81..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
dc830..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
f43e6..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
ed1c7..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
x13
Known
3acb2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
df50d..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
cd9af..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
176ba..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
afd8e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
9f93b..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
4e454..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
91ca0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
68054..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
23b03..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Theorem
033e1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
00b44..
x3
x1
⟶
5bab1..
x0
x1
(proof)
Known
75ae5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
496a0..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
774bc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
2ffc8..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
128ce..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
e8ba7..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
22120..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
b4c31..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
d08d7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
1a9c5..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
8fa6b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
bfd4f..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
9ce91..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
d0980..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1
Known
09417..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
bc2c6..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
5bab1..
x0
x1