Search for blocks/addresses/...
Proofgold Asset
asset id
f6decceecfb0be42b32dfd67e062c30371a819d1b5d875bb5a497b742c8b931f
asset hash
a009b0d829dcbb156df17dfcf2d13b012f2bed718f8dea0cc5771131c78425bd
bday / block
34249
tx
4376d..
preasset
doc published by
Pr4zB..
Param
654b9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
not
not
:
ο
→
ο
Definition
3656c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
654b9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
d92ce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
9eb9c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
d92ce..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
72e0a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
33102..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
72e0a..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
8f55d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
48a69..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8f55d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
d9cea..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8f55d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
a56d9..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
72e0a..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
5f015..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8f55d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
ab042..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
903bc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ab042..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
4b18d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
4a22a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
4b18d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
a1497..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
74e48..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a1497..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
20d20..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a1497..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
8acce..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
43c4e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8acce..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
a3794..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
f8fdb..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a3794..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
84d91..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
66dda..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
84d91..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
4818f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
3429e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
4818f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
28e6a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
4818f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Param
b43ab..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
d9823..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b43ab..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
5f6ee..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
1b9db..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
5f6ee..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
e8ba7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
b6bd6..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
e8ba7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
723e0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
26830..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
723e0..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
79af9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
03c1b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
79af9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
0d1ce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
79af9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
ba015..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
11d3d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ba015..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
c480f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
53762..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
c480f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
62ca1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
1ccbe..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
62ca1..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
a62c3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
73f56..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a62c3..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
f5da9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
e5a83..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
f5da9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
aa64f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
7861e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
aa64f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
7db3a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
94275..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
7db3a..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
176ba..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
2ad4c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
176ba..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
b19dd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
e5b49..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b19dd..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
6b6c2..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
176ba..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
a0b66..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
79af9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
6d19b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
5f6ee..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
08d9f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
e8ba7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
a2064..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
99903..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a2064..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
8a782..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
723e0..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
53286..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
47dfa..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
53286..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
22755..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
79af9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
3f29d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ba015..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
8bd80..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
518d7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
8bd80..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
ee178..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
99ac9..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ee178..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
492fc..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
99fe6..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
492fc..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
7f17b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
2427f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
7f17b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
cf078..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
d09b6..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
cf078..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
2997a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
72e0a..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
70755..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
5904d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
70755..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
3c675..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ee178..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
79a0f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
492fc..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
a79f5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
7f17b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
ceccf..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
c3712..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ceccf..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
e2fd7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
f0b8a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
e2fd7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
ff600..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
70755..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
87daf..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
79af9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
fa0f3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
b4530..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
fa0f3..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
66bd0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a62c3..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
x0
x7
x10
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
150dd..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
558af..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
150dd..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
3f98b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
52ac0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
3f98b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
4c6fc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b43ab..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
a2b8b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
4a27c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a2b8b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
bde2c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a2b8b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
89b0b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
a2b8b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Param
62ac7..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
cc2aa..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
62ac7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
x0
x4
x10
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
34b68..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
3f98b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
ed7e5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b43ab..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x1
x10
)
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
x0
x9
x10
⟶
x11
)
⟶
x11