Search for blocks/addresses/...
Proofgold Asset
asset id
a0a93c65272e9eabebbe02ca3003f7e4f4e4df29d8c015c6bee14e11dd63df6d
asset hash
5fe4b7503d30d4a6c295869b0415a438b0f37ce9604215d4bc75111f984a123d
bday / block
4982
tx
496fc..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_6
nat_6
:
nat_p
6
Known
1c09e..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ι
.
equip
x0
x1
⟶
bij
x2
x3
x5
⟶
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
⊆
x2
)
(
and
(
equip
x0
x7
)
(
∀ x8 .
x8
∈
x7
⟶
∀ x9 .
x9
∈
x7
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
x4
(
x5
x8
)
(
x5
x9
)
)
)
⟶
x6
)
⟶
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
⊆
x3
)
(
and
(
equip
x1
x7
)
(
∀ x8 .
x8
∈
x7
⟶
∀ x9 .
x9
∈
x7
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
x4
x8
x9
)
)
⟶
x6
)
⟶
x6
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
b2ff4..
:
∀ x0 x1 x2 .
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
equip
3
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
ec023..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
∀ x1 .
x1
∈
6
⟶
∀ x2 .
x2
∈
6
⟶
∀ x3 .
x3
∈
6
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x2
x3
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
6
)
(
and
(
equip
3
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x0
x6
x7
)
)
⟶
x4
)
⟶
x4
(proof)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
In_0_4
In_0_4
:
0
∈
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
In_0_6
In_0_6
:
0
∈
6
Known
In_1_6
In_1_6
:
1
∈
6
Known
In_4_6
In_4_6
:
4
∈
6
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
neq_4_0
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_1
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
In_5_6
In_5_6
:
5
∈
6
Known
neq_5_0
neq_5_0
:
5
=
0
⟶
∀ x0 : ο .
x0
Known
neq_5_1
neq_5_1
:
5
=
1
⟶
∀ x0 : ο .
x0
Known
In_2_4
In_2_4
:
2
∈
4
Known
In_2_6
In_2_6
:
2
∈
6
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
Known
neq_5_2
neq_5_2
:
5
=
2
⟶
∀ x0 : ο .
x0
Known
In_3_4
In_3_4
:
3
∈
4
Known
In_3_6
In_3_6
:
3
∈
6
Known
neq_3_0
neq_3_0
:
3
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
4
=
3
⟶
∀ x0 : ο .
x0
Known
neq_5_3
neq_5_3
:
5
=
3
⟶
∀ x0 : ο .
x0
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
neq_3_1
neq_3_1
:
3
=
1
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
3
=
2
⟶
∀ x0 : ο .
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_4_5
In_4_5
:
4
∈
5
Known
neq_5_4
neq_5_4
:
5
=
4
⟶
∀ x0 : ο .
x0
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Theorem
245de..
:
∀ x0 :
ι →
ι → ο
.
x0
0
4
⟶
x0
4
5
⟶
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
6
)
(
and
(
equip
3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
6
)
(
and
(
equip
3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
(proof)
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Known
cases_6
cases_6
:
∀ x0 .
x0
∈
6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
x0
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
b4917..
:
∀ x0 :
ι →
ι → ο
.
x0
4
5
⟶
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
6
)
(
and
(
equip
3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
6
)
(
and
(
equip
3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
(proof)
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
TwoRamseyProp_3_3_6
TwoRamseyProp_3_3_6
:
TwoRamseyProp
3
3
6
(proof)