Search for blocks/addresses/...

Proofgold Asset

asset id
a0a93c65272e9eabebbe02ca3003f7e4f4e4df29d8c015c6bee14e11dd63df6d
asset hash
5fe4b7503d30d4a6c295869b0415a438b0f37ce9604215d4bc75111f984a123d
bday / block
4982
tx
496fc..
preasset
doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param bijbij : ιι(ιι) → ο
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Param equipequip : ιιο
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Param nat_pnat_p : ιο
Param ordsuccordsucc : ιι
Known nat_6nat_6 : nat_p 6
Known 1c09e.. : ∀ x0 x1 x2 x3 . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ι . equip x0 x1bij x2 x3 x5(∀ x6 : ο . (∀ x7 . and (x7x2) (and (equip x0 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)x4 (x5 x8) (x5 x9)))x6)x6)∀ x6 : ο . (∀ x7 . and (x7x3) (and (equip x1 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)x4 x8 x9))x6)x6
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Known b2ff4.. : ∀ x0 x1 x2 . (x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)equip 3 (SetAdjoin (UPair x0 x1) x2)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem ec023.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)∀ x1 . x16∀ x2 . x26∀ x3 . x36(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)x0 x1 x2x0 x1 x3x0 x2 x3∀ x4 : ο . (∀ x5 . and (x56) (and (equip 3 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x0 x6 x7))x4)x4 (proof)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known In_0_4In_0_4 : 04
Known In_1_4In_1_4 : 14
Known In_0_6In_0_6 : 06
Known In_1_6In_1_6 : 16
Known In_4_6In_4_6 : 46
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known neq_4_1neq_4_1 : 4 = 1∀ x0 : ο . x0
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known In_5_6In_5_6 : 56
Known neq_5_0neq_5_0 : 5 = 0∀ x0 : ο . x0
Known neq_5_1neq_5_1 : 5 = 1∀ x0 : ο . x0
Known In_2_4In_2_4 : 24
Known In_2_6In_2_6 : 26
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known neq_4_2neq_4_2 : 4 = 2∀ x0 : ο . x0
Known neq_5_2neq_5_2 : 5 = 2∀ x0 : ο . x0
Known In_3_4In_3_4 : 34
Known In_3_6In_3_6 : 36
Known neq_3_0neq_3_0 : 3 = 0∀ x0 : ο . x0
Known neq_4_3neq_4_3 : 4 = 3∀ x0 : ο . x0
Known neq_5_3neq_5_3 : 5 = 3∀ x0 : ο . x0
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Known neq_3_1neq_3_1 : 3 = 1∀ x0 : ο . x0
Known neq_3_2neq_3_2 : 3 = 2∀ x0 : ο . x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_4_5In_4_5 : 45
Known neq_5_4neq_5_4 : 5 = 4∀ x0 : ο . x0
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Theorem 245de.. : ∀ x0 : ι → ι → ο . x0 0 4x0 4 5(∀ x1 x2 . x0 x1 x2x0 x2 x1)or (∀ x1 : ο . (∀ x2 . and (x26) (and (equip 3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x26) (and (equip 3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1) (proof)
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known cases_6cases_6 : ∀ x0 . x06∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 x0
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0
Param If_iIf_i : οιιι
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem b4917.. : ∀ x0 : ι → ι → ο . x0 4 5(∀ x1 x2 . x0 x1 x2x0 x2 x1)or (∀ x1 : ο . (∀ x2 . and (x26) (and (equip 3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x26) (and (equip 3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1) (proof)
Known pred_ext_2pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x1 x2x0 x2)x0 = x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Theorem TwoRamseyProp_3_3_6TwoRamseyProp_3_3_6 : TwoRamseyProp 3 3 6 (proof)