Search for blocks/addresses/...

Proofgold Asset

asset id
a61160d28b739e4dd4752f3d9b2aa14797b29000e7d37fb80cda056ae4e290c0
asset hash
d11a162dd8cc9ab571a0baebf078fe2e55d736edc93e183cb23b24411e4e9419
bday / block
36397
tx
35d97..
preasset
doc published by PrCmT..
Known df_nfOLD__ax_gen__ax_4__ax_5__df_sb__df_sb_b__ax_6__ax_7__ax_7_b__ax_7_b1__ax_8__ax_8_b__ax_8_b1__ax_9__ax_9_b__ax_9_b1__ax_10__ax_11 : ∀ x0 : ο . ((∀ x1 : ι → ο . wb (wnfOLD x1) (∀ x2 . x1 x2∀ x3 . x1 x3))(∀ x1 : ι → ο . (∀ x2 . x1 x2)∀ x2 . x1 x2)(∀ x1 x2 : ι → ο . (∀ x3 . x1 x3x2 x3)(∀ x3 . x1 x3)∀ x3 . x2 x3)(∀ x1 : ο . x1∀ x2 . x1)(∀ x1 : ι → ο . ∀ x2 x3 . wb (wsb x1 x2) (wa (wceq (cv x3) (cv x2)x1 x3) (wex (λ x4 . wa (wceq (cv x4) (cv x2)) (x1 x4)))))(∀ x1 : ι → ο . ∀ x2 . wb (wsb x1 x2) (wa (wceq (cv x2) (cv x2)x1 x2) (wex (λ x3 . wa (wceq (cv x3) (cv x3)) (x1 x3)))))(∀ x1 . wn (∀ x2 . wn (wceq (cv x2) (cv x1))))(∀ x1 x2 x3 . wceq (cv x1) (cv x2)wceq (cv x1) (cv x3)wceq (cv x2) (cv x3))(∀ x1 x2 . wceq (cv x1) (cv x2)wceq (cv x1) (cv x1)wceq (cv x2) (cv x1))(∀ x1 x2 . wceq (cv x1) (cv x2)wceq (cv x1) (cv x2)wceq (cv x2) (cv x2))(∀ x1 x2 x3 . wceq (cv x1) (cv x2)wcel (cv x1) (cv x3)wcel (cv x2) (cv x3))(∀ x1 x2 . wceq (cv x1) (cv x2)wcel (cv x1) (cv x1)wcel (cv x2) (cv x1))(∀ x1 x2 . wceq (cv x1) (cv x2)wcel (cv x1) (cv x2)wcel (cv x2) (cv x2))(∀ x1 x2 x3 . wceq (cv x1) (cv x2)wcel (cv x3) (cv x1)wcel (cv x3) (cv x2))(∀ x1 x2 . wceq (cv x1) (cv x2)wcel (cv x1) (cv x1)wcel (cv x1) (cv x2))(∀ x1 x2 . wceq (cv x1) (cv x2)wcel (cv x2) (cv x1)wcel (cv x2) (cv x2))(∀ x1 : ι → ο . wn (∀ x2 . x1 x2)∀ x2 . wn (∀ x3 . x1 x3))(∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3)∀ x2 x3 . x1 x3 x2)x0)x0
Theorem df_nfOLD : ∀ x0 : ι → ο . wb (wnfOLD x0) (∀ x1 . x0 x1∀ x2 . x0 x2) (proof)
Theorem ax_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1)∀ x1 . x0 x1 (proof)
Theorem ax_4 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x0 x2)∀ x2 . x1 x2 (proof)
Theorem ax_5 : ∀ x0 : ο . x0∀ x1 . x0 (proof)
Theorem df_sb : ∀ x0 : ι → ο . ∀ x1 x2 . wb (wsb x0 x1) (wa (wceq (cv x2) (cv x1)x0 x2) (wex (λ x3 . wa (wceq (cv x3) (cv x1)) (x0 x3)))) (proof)
Theorem df_sb_b : ∀ x0 : ι → ο . ∀ x1 . wb (wsb x0 x1) (wa (wceq (cv x1) (cv x1)x0 x1) (wex (λ x2 . wa (wceq (cv x2) (cv x2)) (x0 x2)))) (proof)
Theorem ax_9d2 : ∀ x0 . wn (∀ x1 . wn (wceq (cv x1) (cv x0))) (proof)
Theorem ax_8d : ∀ x0 x1 x2 . wceq (cv x0) (cv x1)wceq (cv x0) (cv x2)wceq (cv x1) (cv x2) (proof)
Theorem ax_7_b : ∀ x0 x1 . wceq (cv x0) (cv x1)wceq (cv x0) (cv x0)wceq (cv x1) (cv x0) (proof)
Theorem ax_7_b1 : ∀ x0 x1 . wceq (cv x0) (cv x1)wceq (cv x0) (cv x1)wceq (cv x1) (cv x1) (proof)
Theorem ax_8 : ∀ x0 x1 x2 . wceq (cv x0) (cv x1)wcel (cv x0) (cv x2)wcel (cv x1) (cv x2) (proof)
Theorem ax_8_b : ∀ x0 x1 . wceq (cv x0) (cv x1)wcel (cv x0) (cv x0)wcel (cv x1) (cv x0) (proof)
Theorem ax_8_b1 : ∀ x0 x1 . wceq (cv x0) (cv x1)wcel (cv x0) (cv x1)wcel (cv x1) (cv x1) (proof)
Theorem ax_9 : ∀ x0 x1 x2 . wceq (cv x0) (cv x1)wcel (cv x2) (cv x0)wcel (cv x2) (cv x1) (proof)
Theorem ax_9_b : ∀ x0 x1 . wceq (cv x0) (cv x1)wcel (cv x0) (cv x0)wcel (cv x0) (cv x1) (proof)
Theorem ax_9_b1 : ∀ x0 x1 . wceq (cv x0) (cv x1)wcel (cv x1) (cv x0)wcel (cv x1) (cv x1) (proof)
Theorem ax_10 : ∀ x0 : ι → ο . wn (∀ x1 . x0 x1)∀ x1 . wn (∀ x2 . x0 x2) (proof)
Theorem ax_wl_11v : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2)∀ x1 x2 . x0 x2 x1 (proof)