Search for blocks/addresses/...

Proofgold Asset

asset id
ac22e8341d8ddd789f19361f73fa678676abcf7c1e7fc9350f272c90050788c5
asset hash
2d57b07b330bd38e4c5b98d3e693ba2f6450c75944c37749e67625618024d8bb
bday / block
34298
tx
846f4..
preasset
doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition ba720.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 28532.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (ba720.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 5072f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (28532.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)x0 x2 x8not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem e6127.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x05072f.. x2 x4 x5 x6 x7 x8 x9 x10 x11∀ x12 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x12)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x12)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x12)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)not (x2 x11 x3)x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)x2 x11 x3x12)x12 (proof)