Search for blocks/addresses/...

Proofgold Asset

asset id
ae1212752815eb0969236f71ff1fd8718ad0d88d652dd8efd50d2734d8ac63b7
asset hash
f52b8551f8e830f13eb5be18f8b3d6656319a866383ce418d16e236006f477d7
bday / block
36397
tx
a0443..
preasset
doc published by PrCmT..
Known df_sub__df_neg__df_div__df_nn__df_2__df_3__df_4__df_5__df_6__df_7__df_8__df_9__df_10OLD__df_n0__df_xnn0__df_z__df_dec__df_uz : ∀ x0 : ο . (wceq cmin (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cc) (λ x1 x2 . crio (λ x3 . wceq (co (cv x2) (cv x3) caddc) (cv x1)) (λ x3 . cc)))(∀ x1 : ι → ο . wceq (cneg x1) (co cc0 x1 cmin))wceq cdiv (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cdif cc (csn cc0)) (λ x1 x2 . crio (λ x3 . wceq (co (cv x2) (cv x3) cmul) (cv x1)) (λ x3 . cc)))wceq cn (cima (crdg (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) c1 caddc)) c1) com)wceq c2 (co c1 c1 caddc)wceq c3 (co c2 c1 caddc)wceq c4 (co c3 c1 caddc)wceq c5 (co c4 c1 caddc)wceq c6 (co c5 c1 caddc)wceq c7 (co c6 c1 caddc)wceq c8 (co c7 c1 caddc)wceq c9 (co c8 c1 caddc)wceq c10 (co c9 c1 caddc)wceq cn0 (cun cn (csn cc0))wceq cxnn0 (cun cn0 (csn cpnf))wceq cz (crab (λ x1 . w3o (wceq (cv x1) cc0) (wcel (cv x1) cn) (wcel (cneg (cv x1)) cn)) (λ x1 . cr))(∀ x1 x2 : ι → ο . wceq (cdc x1 x2) (co (co (co c9 c1 caddc) x1 cmul) x2 caddc))wceq cuz (cmpt (λ x1 . cz) (λ x1 . crab (λ x2 . wbr (cv x1) (cv x2) cle) (λ x2 . cz)))x0)x0
Theorem df_sub : wceq cmin (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . cc) (λ x0 x1 . crio (λ x2 . wceq (co (cv x1) (cv x2) caddc) (cv x0)) (λ x2 . cc))) (proof)
Theorem df_neg : ∀ x0 : ι → ο . wceq (cneg x0) (co cc0 x0 cmin) (proof)
Theorem df_div : wceq cdiv (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . cdif cc (csn cc0)) (λ x0 x1 . crio (λ x2 . wceq (co (cv x1) (cv x2) cmul) (cv x0)) (λ x2 . cc))) (proof)
Theorem df_nn : wceq cn (cima (crdg (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) c1 caddc)) c1) com) (proof)
Theorem df_2 : wceq c2 (co c1 c1 caddc) (proof)
Theorem df_3 : wceq c3 (co c2 c1 caddc) (proof)
Theorem df_4 : wceq c4 (co c3 c1 caddc) (proof)
Theorem df_5 : wceq c5 (co c4 c1 caddc) (proof)
Theorem df_6 : wceq c6 (co c5 c1 caddc) (proof)
Theorem df_7 : wceq c7 (co c6 c1 caddc) (proof)
Theorem df_8 : wceq c8 (co c7 c1 caddc) (proof)
Theorem df_9 : wceq c9 (co c8 c1 caddc) (proof)
Theorem df_10OLD : wceq c10 (co c9 c1 caddc) (proof)
Theorem df_n0 : wceq cn0 (cun cn (csn cc0)) (proof)
Theorem df_xnn0 : wceq cxnn0 (cun cn0 (csn cpnf)) (proof)
Theorem df_z : wceq cz (crab (λ x0 . w3o (wceq (cv x0) cc0) (wcel (cv x0) cn) (wcel (cneg (cv x0)) cn)) (λ x0 . cr)) (proof)
Theorem df_dec : ∀ x0 x1 : ι → ο . wceq (cdc x0 x1) (co (co (co c9 c1 caddc) x0 cmul) x1 caddc) (proof)
Theorem df_uz : wceq cuz (cmpt (λ x0 . cz) (λ x0 . crab (λ x1 . wbr (cv x0) (cv x1) cle) (λ x1 . cz))) (proof)