Search for blocks/addresses/...

Proofgold Asset

asset id
ae8a795d8a896d71d3f91db838b826a3735b1104cf7a2530257a9898258ebcbd
asset hash
0c6b06a08ee5f0bed40fe4b507dc80e910d61a996bad6ef29b5cf59e07b43407
bday / block
48181
tx
57923..
preasset
doc published by PrGM6..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)not (x0 x4 x5)x6)x6
Definition 455db.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)x0 x4 x6x0 x5 x6x7)x7
Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)x0 x4 x5x6)x6
Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition c9184.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
Known c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
Theorem 62840.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)455db.. x0 x2 x3 x4 x5 x6 x7c9184.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x10not (x0 x2 x12)False)(x0 x2 x9not (x0 x2 x13)False)(x0 x2 x9not (x0 x2 x12)False)(x0 x2 x8not (x0 x2 x14)False)False
...

Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known 5be00.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c9184.. x1 x2 x3 x4 x5 x6 x7 x8c9184.. x1 x2 x6 x4 x7 x3 x5 x8
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 9ca93.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)455db.. x0 x2 x3 x4 x5 x6 x7c9184.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x10not (x0 x2 x9)False)(x0 x2 x8not (x0 x2 x14)False)(x0 x2 x12not (x0 x2 x11)False)False
...

Known aa900.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c9184.. x1 x2 x3 x4 x5 x6 x7 x8c9184.. x1 x2 x6 x7 x4 x5 x3 x8
Theorem ea6ee.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)455db.. x0 x2 x3 x4 x5 x6 x7c9184.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x13not (x0 x2 x12)False)(x0 x2 x8not (x0 x2 x14)False)False
...

Known e5d54.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c9184.. x1 x2 x3 x4 x5 x6 x7 x8c9184.. x1 x2 x3 x5 x4 x7 x6 x8
Theorem 2e3b5.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)455db.. x0 x2 x3 x4 x5 x6 x7c9184.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x8not (x0 x2 x14)False)False
...

Known 268a2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c9184.. x1 x2 x3 x4 x5 x6 x7 x8c9184.. x1 x8 x3 x4 x5 x6 x7 x2
Theorem 70d68.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)455db.. x0 x2 x3 x4 x5 x6 x7c9184.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0False
...