Search for blocks/addresses/...
Proofgold Asset
asset id
df2bf5472e8915b0a89cf928eaf8a08c027fd628b24d9940ab378511f62cbce3
asset hash
b11c19ae946d4ba199dc3c0db2afe4995e4d4fad51d5a71f42b96d434e68295d
bday / block
28531
tx
dd055..
preasset
doc published by
PrQUS..
Param
complex
complex
:
ι
Param
pair_tag
pair_tag
:
ι
→
ι
→
ι
→
ι
Param
CD_proj0
CD_proj0
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Param
CD_proj1
CD_proj1
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
CD_conj
CD_conj
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 .
pair_tag
x0
(
x3
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x4
)
)
Param
Sing
Sing
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNo
SNo
:
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
conj_CSNo
conj_CSNo
:=
CD_conj
(
Sing
2
)
SNo
minus_SNo
(
λ x0 .
x0
)
Definition
CSNo_Im
CSNo_Im
:=
CD_proj1
(
Sing
2
)
SNo
Definition
CSNo_Re
CSNo_Re
:=
CD_proj0
(
Sing
2
)
SNo
Param
real
real
:
ι
Definition
SNo_pair
SNo_pair
:=
pair_tag
(
Sing
2
)
Known
complex_I
complex_I
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNo_pair
x0
x1
∈
complex
Known
complex_Re_real
complex_Re_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Re
x0
∈
real
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
complex_Im_real
complex_Im_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Im
x0
∈
real
Theorem
complex_conj_CSNo
complex_conj_CSNo
:
∀ x0 .
x0
∈
complex
⟶
conj_CSNo
x0
∈
complex
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
CSNo_pair
CSNo_pair
:=
pair_tag
(
Sing
3
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
quaternion
quaternion
:=
{
CSNo_pair
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
complex
complex
}
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
quaternion_I
quaternion_I
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
CSNo_pair
x0
x1
∈
quaternion
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
quaternion_E
quaternion_E
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
complex
⟶
∀ x3 .
x3
∈
complex
⟶
x0
=
CSNo_pair
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
HSNo
HSNo
:
ι
→
ο
Param
CSNo
CSNo
:
ι
→
ο
Known
HSNo_I
HSNo_I
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo
(
CSNo_pair
x0
x1
)
Known
complex_CSNo
complex_CSNo
:
∀ x0 .
x0
∈
complex
⟶
CSNo
x0
Theorem
quaternion_HSNo
quaternion_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
CSNo_pair_0
CSNo_pair_0
:
∀ x0 .
CSNo_pair
x0
0
=
x0
Known
complex_0
complex_0
:
0
∈
complex
Theorem
complex_quaternion
complex_quaternion
:
complex
⊆
quaternion
(proof)
Theorem
quaternion_0
quaternion_0
:
0
∈
quaternion
(proof)
Known
complex_1
complex_1
:
1
∈
complex
Theorem
quaternion_1
quaternion_1
:
1
∈
quaternion
(proof)
Param
Complex_i
Complex_i
:
ι
Known
complex_i
complex_i
:
Complex_i
∈
complex
Theorem
quaternion_i
quaternion_i
:
Complex_i
∈
quaternion
(proof)
Definition
Quaternion_j
Quaternion_j
:=
CSNo_pair
0
1
Theorem
quaternion_j
quaternion_j
:
Quaternion_j
∈
quaternion
(proof)
Definition
Quaternion_k
Quaternion_k
:=
CSNo_pair
0
Complex_i
Theorem
quaternion_k
quaternion_k
:
Quaternion_k
∈
quaternion
(proof)
Definition
HSNo_proj0
HSNo_proj0
:=
CD_proj0
(
Sing
3
)
CSNo
Known
HSNo_proj0_2
HSNo_proj0_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj0
(
CSNo_pair
x0
x1
)
=
x0
Theorem
quaternion_p0_eq
quaternion_p0_eq
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
HSNo_proj0
(
CSNo_pair
x0
x1
)
=
x0
(proof)
Definition
HSNo_proj1
HSNo_proj1
:=
CD_proj1
(
Sing
3
)
CSNo
Known
HSNo_proj1_2
HSNo_proj1_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj1
(
CSNo_pair
x0
x1
)
=
x1
Theorem
quaternion_p1_eq
quaternion_p1_eq
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
HSNo_proj1
(
CSNo_pair
x0
x1
)
=
x1
(proof)
Theorem
quaternion_p0_complex
quaternion_p0_complex
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo_proj0
x0
∈
complex
(proof)
Theorem
quaternion_p1_complex
quaternion_p1_complex
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo_proj1
x0
∈
complex
(proof)
Known
HSNo_proj0proj1_split
HSNo_proj0proj1_split
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
Theorem
quaternion_proj0proj1_split
quaternion_proj0proj1_split
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
(proof)
Definition
CD_minus
CD_minus
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι → ι
.
λ x3 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
)
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Definition
minus_HSNo
minus_HSNo
:=
CD_minus
(
Sing
3
)
CSNo
minus_CSNo
Known
complex_minus_CSNo
complex_minus_CSNo
:
∀ x0 .
x0
∈
complex
⟶
minus_CSNo
x0
∈
complex
Theorem
quaternion_minus_HSNo
quaternion_minus_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
minus_HSNo
x0
∈
quaternion
(proof)
Definition
conj_HSNo
conj_HSNo
:=
CD_conj
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
Theorem
quaternion_conj_HSNo
quaternion_conj_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
conj_HSNo
x0
∈
quaternion
(proof)
Definition
CD_add
CD_add
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
)
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Definition
add_HSNo
add_HSNo
:=
CD_add
(
Sing
3
)
CSNo
add_CSNo
Known
complex_add_CSNo
complex_add_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
add_CSNo
x0
x1
∈
complex
Theorem
quaternion_add_HSNo
quaternion_add_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
add_HSNo
x0
x1
∈
quaternion
(proof)
Definition
CD_mul
CD_mul
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 x5 :
ι →
ι → ι
.
λ x6 x7 .
pair_tag
x0
(
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
)
(
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
)
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Definition
mul_HSNo
mul_HSNo
:=
CD_mul
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
add_CSNo
mul_CSNo
Known
complex_mul_CSNo
complex_mul_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
mul_CSNo
x0
x1
∈
complex
Theorem
quaternion_mul_HSNo
quaternion_mul_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
mul_HSNo
x0
x1
∈
quaternion
(proof)
Theorem
complex_p0_eq
complex_p0_eq
:
∀ x0 .
x0
∈
complex
⟶
HSNo_proj0
x0
=
x0
(proof)
Theorem
complex_p1_eq
complex_p1_eq
:
∀ x0 .
x0
∈
complex
⟶
HSNo_proj1
x0
=
0
(proof)
Definition
HSNo_pair
HSNo_pair
:=
pair_tag
(
Sing
4
)
Definition
octonion
octonion
:=
{
HSNo_pair
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
quaternion
quaternion
}
Theorem
octonion_I
octonion_I
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
HSNo_pair
x0
x1
∈
octonion
(proof)
Theorem
octonion_E
octonion_E
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
quaternion
⟶
∀ x3 .
x3
∈
quaternion
⟶
x0
=
HSNo_pair
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
OSNo
OSNo
:
ι
→
ο
Known
OSNo_I
OSNo_I
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo
(
HSNo_pair
x0
x1
)
Theorem
octonion_OSNo
octonion_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
OSNo
x0
(proof)
Known
HSNo_pair_0
HSNo_pair_0
:
∀ x0 .
HSNo_pair
x0
0
=
x0
Theorem
quaternion_octonion
quaternion_octonion
:
quaternion
⊆
octonion
(proof)
Theorem
octonion_0
octonion_0
:
0
∈
octonion
(proof)
Theorem
octonion_1
octonion_1
:
1
∈
octonion
(proof)
Theorem
octonion_i
octonion_i
:
Complex_i
∈
octonion
(proof)
Theorem
octonion_j
octonion_j
:
Quaternion_j
∈
octonion
(proof)
Theorem
octonion_k
octonion_k
:
Quaternion_k
∈
octonion
(proof)
Definition
Octonion_i0
Octonion_i0
:=
HSNo_pair
0
1
Theorem
octonion_i0
octonion_i0
:
Octonion_i0
∈
octonion
(proof)
Definition
Octonion_i3
Octonion_i3
:=
HSNo_pair
0
(
minus_HSNo
Complex_i
)
Theorem
octonion_i3
octonion_i3
:
Octonion_i3
∈
octonion
(proof)
Definition
Octonion_i5
Octonion_i5
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_k
)
Theorem
octonion_i5
octonion_i5
:
Octonion_i5
∈
octonion
(proof)
Definition
Octonion_i6
Octonion_i6
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_j
)
Theorem
octonion_i6
octonion_i6
:
Octonion_i6
∈
octonion
(proof)
Definition
OSNo_proj0
OSNo_proj0
:=
CD_proj0
(
Sing
4
)
HSNo
Known
OSNo_proj0_2
OSNo_proj0_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj0
(
HSNo_pair
x0
x1
)
=
x0
Theorem
octonion_p0_eq
octonion_p0_eq
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
OSNo_proj0
(
HSNo_pair
x0
x1
)
=
x0
(proof)
Definition
OSNo_proj1
OSNo_proj1
:=
CD_proj1
(
Sing
4
)
HSNo
Known
OSNo_proj1_2
OSNo_proj1_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj1
(
HSNo_pair
x0
x1
)
=
x1
Theorem
octonion_p1_eq
octonion_p1_eq
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
OSNo_proj1
(
HSNo_pair
x0
x1
)
=
x1
(proof)
Theorem
octonion_p0_quaternion
octonion_p0_quaternion
:
∀ x0 .
x0
∈
octonion
⟶
OSNo_proj0
x0
∈
quaternion
(proof)
Theorem
octonion_p1_quaternion
octonion_p1_quaternion
:
∀ x0 .
x0
∈
octonion
⟶
OSNo_proj1
x0
∈
quaternion
(proof)
Known
OSNo_proj0proj1_split
OSNo_proj0proj1_split
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
Theorem
octonion_proj0proj1_split
octonion_proj0proj1_split
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
(proof)
Definition
minus_OSNo
minus_OSNo
:=
CD_minus
(
Sing
4
)
HSNo
minus_HSNo
Theorem
octonion_minus_OSNo
octonion_minus_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
minus_OSNo
x0
∈
octonion
(proof)
Definition
conj_OSNo
conj_OSNo
:=
CD_conj
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
Theorem
octonion_conj_OSNo
octonion_conj_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
conj_OSNo
x0
∈
octonion
(proof)
Definition
add_OSNo
add_OSNo
:=
CD_add
(
Sing
4
)
HSNo
add_HSNo
Theorem
octonion_add_OSNo
octonion_add_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
add_OSNo
x0
x1
∈
octonion
(proof)
Definition
mul_OSNo
mul_OSNo
:=
CD_mul
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
add_HSNo
mul_HSNo
Theorem
octonion_mul_OSNo
octonion_mul_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
mul_OSNo
x0
x1
∈
octonion
(proof)
Theorem
quaternion_p0_eq'
quaternion_p0_eq
:
∀ x0 .
x0
∈
quaternion
⟶
OSNo_proj0
x0
=
x0
(proof)
Theorem
quaternion_p1_eq'
quaternion_p1_eq
:
∀ x0 .
x0
∈
quaternion
⟶
OSNo_proj1
x0
=
0
(proof)