Search for blocks/addresses/...

Proofgold Asset

asset id
b195c8bf8fd0fd92caacd3a2a4bb4e2519be2a513c3e392d1e07e3aa45cd12be
asset hash
aab594f1357bbb1906771addc9ed42c0ea6f79dd3eca07e7b35b47f41bf6c015
bday / block
36378
tx
e3215..
preasset
doc published by PrCmT..
Known df_sslt__df_scut__df_made__df_old__df_new__df_left__df_right__df_txp__df_pprod__df_sset__df_trans__df_bigcup__df_fix__df_limits__df_funs__df_singleton__df_singles__df_image : ∀ x0 : ο . (wceq csslt (copab (λ x1 x2 . w3a (wss (cv x1) csur) (wss (cv x2) csur) (wral (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) cslt) (λ x4 . cv x2)) (λ x3 . cv x1))))wceq cscut (cmpt2 (λ x1 x2 . cpw csur) (λ x1 x2 . cima csslt (csn (cv x1))) (λ x1 x2 . crio (λ x3 . wceq (cfv (cv x3) cbday) (cint (cima cbday (crab (λ x4 . wa (wbr (cv x1) (csn (cv x4)) csslt) (wbr (csn (cv x4)) (cv x2) csslt)) (λ x4 . csur))))) (λ x3 . crab (λ x4 . wa (wbr (cv x1) (csn (cv x4)) csslt) (wbr (csn (cv x4)) (cv x2) csslt)) (λ x4 . csur))))wceq cmade (crecs (cmpt (λ x1 . cvv) (λ x1 . cima cscut (cxp (cpw (cuni (crn (cv x1)))) (cpw (cuni (crn (cv x1))))))))wceq cold (cmpt (λ x1 . con0) (λ x1 . cuni (cima cmade (cv x1))))wceq cnew (cmpt (λ x1 . con0) (λ x1 . cdif (cfv (cv x1) cold) (cfv (cv x1) cmade)))wceq cleft (cmpt (λ x1 . csur) (λ x1 . crab (λ x2 . wral (λ x3 . wa (wbr (cv x2) (cv x3) cslt) (wbr (cv x3) (cv x1) cslt)wcel (cfv (cv x2) cbday) (cfv (cv x3) cbday)) (λ x3 . csur)) (λ x2 . cfv (cfv (cv x1) cbday) cold)))wceq cright (cmpt (λ x1 . csur) (λ x1 . crab (λ x2 . wral (λ x3 . wa (wbr (cv x1) (cv x3) cslt) (wbr (cv x3) (cv x2) cslt)wcel (cfv (cv x2) cbday) (cfv (cv x3) cbday)) (λ x3 . csur)) (λ x2 . cfv (cfv (cv x1) cbday) cold)))(∀ x1 x2 : ι → ο . wceq (ctxp x1 x2) (cin (ccom (ccnv (cres c1st (cxp cvv cvv))) x1) (ccom (ccnv (cres c2nd (cxp cvv cvv))) x2)))(∀ x1 x2 : ι → ο . wceq (cpprod x1 x2) (ctxp (ccom x1 (cres c1st (cxp cvv cvv))) (ccom x2 (cres c2nd (cxp cvv cvv)))))wceq csset (cdif (cxp cvv cvv) (crn (ctxp cep (cdif cvv cep))))wceq ctrans (cdif cvv (crn (cdif (ccom cep cep) cep)))wceq cbigcup (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp (ccom cep cep) cvv))))(∀ x1 : ι → ο . wceq (cfix x1) (cdm (cin x1 cid)))wceq climits (cdif (cin con0 (cfix cbigcup)) (csn c0))wceq cfuns (cdif (cpw (cxp cvv cvv)) (cfix (ccom cep (ccom (ctxp c1st (ccom (cdif cvv cid) c2nd)) (ccnv cep)))))wceq csingle (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp cid cvv))))wceq csingles (crn csingle)(∀ x1 : ι → ο . wceq (cimage x1) (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp (ccom cep (ccnv x1)) cvv)))))x0)x0
Theorem df_sslt : wceq csslt (copab (λ x0 x1 . w3a (wss (cv x0) csur) (wss (cv x1) csur) (wral (λ x2 . wral (λ x3 . wbr (cv x2) (cv x3) cslt) (λ x3 . cv x1)) (λ x2 . cv x0)))) (proof)
Theorem df_scut : wceq cscut (cmpt2 (λ x0 x1 . cpw csur) (λ x0 x1 . cima csslt (csn (cv x0))) (λ x0 x1 . crio (λ x2 . wceq (cfv (cv x2) cbday) (cint (cima cbday (crab (λ x3 . wa (wbr (cv x0) (csn (cv x3)) csslt) (wbr (csn (cv x3)) (cv x1) csslt)) (λ x3 . csur))))) (λ x2 . crab (λ x3 . wa (wbr (cv x0) (csn (cv x3)) csslt) (wbr (csn (cv x3)) (cv x1) csslt)) (λ x3 . csur)))) (proof)
Theorem df_made : wceq cmade (crecs (cmpt (λ x0 . cvv) (λ x0 . cima cscut (cxp (cpw (cuni (crn (cv x0)))) (cpw (cuni (crn (cv x0)))))))) (proof)
Theorem df_old : wceq cold (cmpt (λ x0 . con0) (λ x0 . cuni (cima cmade (cv x0)))) (proof)
Theorem df_new : wceq cnew (cmpt (λ x0 . con0) (λ x0 . cdif (cfv (cv x0) cold) (cfv (cv x0) cmade))) (proof)
Theorem df_left : wceq cleft (cmpt (λ x0 . csur) (λ x0 . crab (λ x1 . wral (λ x2 . wa (wbr (cv x1) (cv x2) cslt) (wbr (cv x2) (cv x0) cslt)wcel (cfv (cv x1) cbday) (cfv (cv x2) cbday)) (λ x2 . csur)) (λ x1 . cfv (cfv (cv x0) cbday) cold))) (proof)
Theorem df_right : wceq cright (cmpt (λ x0 . csur) (λ x0 . crab (λ x1 . wral (λ x2 . wa (wbr (cv x0) (cv x2) cslt) (wbr (cv x2) (cv x1) cslt)wcel (cfv (cv x1) cbday) (cfv (cv x2) cbday)) (λ x2 . csur)) (λ x1 . cfv (cfv (cv x0) cbday) cold))) (proof)
Theorem df_txp : ∀ x0 x1 : ι → ο . wceq (ctxp x0 x1) (cin (ccom (ccnv (cres c1st (cxp cvv cvv))) x0) (ccom (ccnv (cres c2nd (cxp cvv cvv))) x1)) (proof)
Theorem df_pprod : ∀ x0 x1 : ι → ο . wceq (cpprod x0 x1) (ctxp (ccom x0 (cres c1st (cxp cvv cvv))) (ccom x1 (cres c2nd (cxp cvv cvv)))) (proof)
Theorem df_sset : wceq csset (cdif (cxp cvv cvv) (crn (ctxp cep (cdif cvv cep)))) (proof)
Theorem df_trans : wceq ctrans (cdif cvv (crn (cdif (ccom cep cep) cep))) (proof)
Theorem df_bigcup : wceq cbigcup (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp (ccom cep cep) cvv)))) (proof)
Theorem df_fix : ∀ x0 : ι → ο . wceq (cfix x0) (cdm (cin x0 cid)) (proof)
Theorem df_limits : wceq climits (cdif (cin con0 (cfix cbigcup)) (csn c0)) (proof)
Theorem df_funs : wceq cfuns (cdif (cpw (cxp cvv cvv)) (cfix (ccom cep (ccom (ctxp c1st (ccom (cdif cvv cid) c2nd)) (ccnv cep))))) (proof)
Theorem df_singleton : wceq csingle (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp cid cvv)))) (proof)
Theorem df_singles : wceq csingles (crn csingle) (proof)
Theorem df_image : ∀ x0 : ι → ο . wceq (cimage x0) (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp (ccom cep (ccnv x0)) cvv)))) (proof)