Search for blocks/addresses/...
Proofgold Asset
asset id
b1e4497ff270a6b135aa750b716cec15d50d772f9a52b826e0fc8f257ed31068
asset hash
33967069445fa7a984394a6300b7151140d353c7507cd030ede0868e55567040
bday / block
18008
tx
a113b..
preasset
doc published by
Pr4zB..
Definition
Church13_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x14
)
⟶
x1
x0
Theorem
fe032..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x0
)
(proof)
Theorem
19e27..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x1
)
(proof)
Theorem
f85ed..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x2
)
(proof)
Theorem
82a17..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x3
)
(proof)
Theorem
59a5f..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x4
)
(proof)
Theorem
5ca83..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x5
)
(proof)
Theorem
40dec..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x6
)
(proof)
Theorem
41eb8..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x7
)
(proof)
Theorem
42638..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x8
)
(proof)
Theorem
34c89..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x9
)
(proof)
Theorem
bf246..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x10
)
(proof)
Theorem
7e49d..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x11
)
(proof)
Theorem
cc205..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x12
)
(proof)
Definition
TwoRamseyGraph_3_5_Church13
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
)
Definition
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
Theorem
099c4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x0
)
(proof)
Theorem
a3398..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x0
)
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x1
)
(proof)
Definition
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
Theorem
ab802..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x0
)
(proof)
Theorem
d457e..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x0
)
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x1
)
(proof)
Definition
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
Theorem
30073..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x0
)
(proof)
Theorem
9e4f1..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x0
)
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x1
)
(proof)
Definition
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
Theorem
091d5..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x0
)
(proof)
Theorem
6d980..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x0
)
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x1
)
(proof)
Definition
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
Theorem
92c84..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x0
)
(proof)
Theorem
db65d..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x0
)
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x1
)
(proof)
Definition
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Theorem
1e494..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
(proof)
Theorem
85fe9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x1
)
(proof)