Search for blocks/addresses/...
Proofgold Asset
asset id
b3181be1aba3d864224ad00d3dcb3f7de31d9e2b20dfdb8816a82a5b0938ebe4
asset hash
8d252eefa6bd4621d6789144bcc5c78d5df5ff38072b1100a5153e982f2075f1
bday / block
38913
tx
ca8c8..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
7f677..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2426f..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Known
edbc7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
7f677..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
58366..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
fa676..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
58366..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
c9184..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
1fb85..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
c9184..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
e7595..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
a1199..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
e7595..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
8c395..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
11597..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
8c395..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
88b7c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
31721..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
88b7c..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
ae506..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
997f9..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
ae506..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
98053..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
fa633..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
98053..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
5db61..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
0c7ba..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
5db61..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
182cc..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
baebc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
182cc..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
796c4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
06ff5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
796c4..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
084ea..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
d2797..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
084ea..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
3819d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
47c02..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
3819d..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
6ca1f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7465c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
6ca1f..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
99de9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
beaad..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
99de9..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
cb525..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
94ea3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
cb525..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
3109c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
5b472..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
3109c..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
2319a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
87967..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
2319a..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
323f1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
85413..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
323f1..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
16c0f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
cf81d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
16c0f..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
36d58..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
4221f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
36d58..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
28e31..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
a5918..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
28e31..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
02f3e..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
45e44..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
02f3e..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
28532..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
c912e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
28532..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
e8ae3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
2805f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
e8ae3..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
468d8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7e21c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
468d8..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
58615..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
dd300..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
58615..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
ae7a6..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
3576d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
ae7a6..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
185eb..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
afa84..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
185eb..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
18ba2..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
3a23f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
18ba2..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
8b2a4..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
ff9a0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
8b2a4..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
13b0f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
a9c4f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
13b0f..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
c8dd3..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
1bb98..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
c8dd3..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
2bd79..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
f1900..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
2bd79..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
2fb86..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
cf6ac..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
2fb86..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
81638..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
b32f6..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
81638..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
70d65..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
94959..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
70d65..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
843b8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
22ac1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
843b8..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
de02c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
91d4c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
de02c..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
80533..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
45cda..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
80533..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
2452c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
6b7c1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
2452c..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
7c934..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7e550..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
7c934..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
b0193..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
16283..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
b0193..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
2c4f5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
face1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
2c4f5..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
a643d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
90f58..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
a643d..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
59105..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
65695..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
59105..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
1d4b1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
d577e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
1d4b1..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
bd1a2..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
511b2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
bd1a2..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
99e5f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
0f0d9..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
99e5f..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
7c036..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7e72e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
7c036..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
a5b26..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
23d5e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
a5b26..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
27260..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
4ca7b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
27260..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
ba9c9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
c37d7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
ba9c9..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
13471..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
05bb1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
13471..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
28e61..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
82265..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
28e61..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
df271..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7975f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
df271..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
7f522..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
f0e9b..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
7f522..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
d8477..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
85d1f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
d8477..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
04ac1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7a316..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
04ac1..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
21422..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
ccf11..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
21422..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
948b9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
09738..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
948b9..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
09fea..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
0ccd5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
09fea..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
f68ad..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
f4d86..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
f68ad..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
a53de..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
3f704..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
a53de..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
f9bfa..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
7745f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
f9bfa..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
9733c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
152ec..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
9733c..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
b3861..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
4e529..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
b3861..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
836ee..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
b1728..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
836ee..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
1c500..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
2342d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
1c500..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
bb926..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
4355c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
bb926..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
b9d10..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Known
9dbdc..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
b9d10..
x1
x4
x5
x6
x7
x8
x9
x10
⟶
2426f..
x0
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
u7
:
ι
Definition
u8
:=
ordsucc
u7
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
e2ea8..
:
∀ x0 x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x1
)
(
atleastp
x0
(
setminus
x1
(
Sing
x3
)
)
)
⟶
x2
)
⟶
x2
Definition
0c39d..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
7f677..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
58366..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
c9184..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
e7595..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
8c395..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
88b7c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
ae506..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
98053..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
5db61..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
182cc..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
796c4..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
084ea..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
3819d..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
6ca1f..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
99de9..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
cb525..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
3109c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2319a..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
323f1..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
16c0f..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
36d58..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
28e31..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
02f3e..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
28532..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
e8ae3..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
468d8..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
58615..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
ae7a6..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
185eb..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
18ba2..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
8b2a4..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
13b0f..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
c8dd3..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2bd79..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2fb86..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
81638..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
70d65..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
843b8..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
de02c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
80533..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2452c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
7c934..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
b0193..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2c4f5..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
a643d..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
59105..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
1d4b1..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
bd1a2..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
99e5f..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
7c036..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
a5b26..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
27260..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
ba9c9..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
13471..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
28e61..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
df271..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
7f522..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
d8477..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
04ac1..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
21422..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
948b9..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
09fea..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
f68ad..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
a53de..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
f9bfa..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
9733c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
b3861..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
836ee..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
1c500..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
bb926..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
b9d10..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
x2
Known
a8fb8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
atleastp
u7
x0
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
0c39d..
x0
x1
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
e7c7c..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
x0
⊆
x1
⟶
cf2df..
x1
x2
⟶
cf2df..
x0
x2
Known
a55d1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
x0
⊆
x1
⟶
4402e..
x1
x2
⟶
4402e..
x0
x2
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
dfeca..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
atleastp
u8
x0
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
2426f..
x0
x1
(proof)