Search for blocks/addresses/...

Proofgold Asset

asset id
c99512ab351d5a7f504055776ef86e3c80280c151f22f24c8678ce9b95b85edc
asset hash
b4150ff8dd85eeef459229cd81d312b2ce95f785d6a26601aa9774dce1cb8b1d
bday / block
12284
tx
19513..
preasset
doc published by PrGxv..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param omegaomega : ι
Param SNoS_SNoS_ : ιι
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known omega_ordinalomega_ordinal : ordinal omega
Param SNoLevSNoLev : ιι
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Param nat_pnat_p : ιο
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Param SNoSNo : ιο
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem omega_SNoS_omegaomega_SNoS_omega : omegaSNoS_ omega (proof)
Param add_SNoadd_SNo : ιιι
Param ordsuccordsucc : ιι
Param add_natadd_nat : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0 (proof)
Param SNoLtSNoLt : ιιο
Param abs_SNoabs_SNo : ιι
Param minus_SNominus_SNo : ιι
Param eps_eps_ : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLeSNoLe : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known SNo_0SNo_0 : SNo 0
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known abs_SNo_minusabs_SNo_minus : ∀ x0 . SNo x0abs_SNo (minus_SNo x0) = abs_SNo x0
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNo_eps_SNoS_omegaSNo_eps_SNoS_omega : ∀ x0 . x0omegaeps_ x0SNoS_ omega
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known SNo_eps_decrSNo_eps_decr : ∀ x0 . x0omega∀ x1 . x1x0SNoLt (eps_ x0) (eps_ x1)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem SNo_prereal_incr_lower_posSNo_prereal_incr_lower_pos : ∀ x0 . SNo x0SNoLt 0 x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 . x1omega∀ x2 : ο . (∀ x3 . x3SNoS_ omegaSNoLt 0 x3SNoLt x3 x0SNoLt x0 (add_SNo x3 (eps_ x1))x2)x2 (proof)
Param mul_SNomul_SNo : ιιι
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem pos_mul_SNo_Lt'pos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x2SNoLt x0 x1SNoLt (mul_SNo x0 x2) (mul_SNo x1 x2) (proof)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem pos_mul_SNo_Lt2pos_mul_SNo_Lt2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt 0 x0SNoLt 0 x1SNoLt x0 x2SNoLt x1 x3SNoLt (mul_SNo x0 x1) (mul_SNo x2 x3) (proof)
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem nonneg_mul_SNo_Le'nonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe 0 x2SNoLe x0 x1SNoLe (mul_SNo x0 x2) (mul_SNo x1 x2) (proof)
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Theorem nonneg_mul_SNo_Le2nonneg_mul_SNo_Le2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe 0 x0SNoLe 0 x1SNoLe x0 x2SNoLe x1 x3SNoLe (mul_SNo x0 x1) (mul_SNo x2 x3) (proof)
Param exp_SNo_natexp_SNo_nat : ιιι
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known exp_SNo_nat_0exp_SNo_nat_0 : ∀ x0 . SNo x0exp_SNo_nat x0 0 = 1
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known exp_SNo_nat_Sexp_SNo_nat_S : ∀ x0 . SNo x0∀ x1 . nat_p x1exp_SNo_nat x0 (ordsucc x1) = mul_SNo x0 (exp_SNo_nat x0 x1)
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known SNo_1SNo_1 : SNo 1
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Theorem exp_SNo_1_bdexp_SNo_1_bd : ∀ x0 . SNo x0SNoLe 1 x0∀ x1 . nat_p x1SNoLe 1 (exp_SNo_nat x0 x1) (proof)
Known SNo_2SNo_2 : SNo 2
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNoLt_1_2SNoLt_1_2 : SNoLt 1 2
Theorem exp_SNo_2_bdexp_SNo_2_bd : ∀ x0 . nat_p x0SNoLt x0 (exp_SNo_nat 2 x0) (proof)
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known mul_SNo_eps_power_2mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1
Theorem eps_bd_1eps_bd_1 : ∀ x0 . x0omegaSNoLe (eps_ x0) 1 (proof)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Theorem SNo_foilSNo_foil : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (mul_SNo x0 x2) (add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x2) (mul_SNo x1 x3))) (proof)
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem mul_SNo_minus_minusmul_SNo_minus_minus : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) (minus_SNo x1) = mul_SNo x0 x1 (proof)
Known add_SNo_Lt3add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Theorem add_SNo_Lt4add_SNo_Lt4 : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt x0 x3SNoLt x1 x4SNoLt x2 x5SNoLt (add_SNo x0 (add_SNo x1 x2)) (add_SNo x3 (add_SNo x4 x5)) (proof)
Theorem mul_SNo_Lt1_pos_Ltmul_SNo_Lt1_pos_Lt : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 1SNoLt 0 x1SNoLt (mul_SNo x0 x1) x1 (proof)
Theorem mul_SNo_Le1_nonneg_Lemul_SNo_Le1_nonneg_Le : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 1SNoLe 0 x1SNoLe (mul_SNo x0 x1) x1 (proof)
Theorem SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2)) (proof)
Theorem 82b86.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3))) (proof)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Theorem 624bf.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3)) = mul_SNo (mul_SNo x0 (mul_SNo x1 x2)) x3 (proof)
Theorem mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2) (proof)
Theorem 85f24.. : ∀ x0 x1 x2 x3 . SNo x1SNo x2SNo x3mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3)) = mul_SNo x0 (mul_SNo x2 (mul_SNo x1 x3)) (proof)
Theorem mul_SNo_com_3b_1_2mul_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (mul_SNo x0 x1) x2 = mul_SNo (mul_SNo x0 x2) x1 (proof)
Theorem mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3) (proof)
Theorem mul_SNo_rotate_3_1mul_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x2 (mul_SNo x0 x1) (proof)
Theorem mul_SNo_rotate_4_1mul_SNo_rotate_4_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3)) = mul_SNo x3 (mul_SNo x0 (mul_SNo x1 x2)) (proof)
Theorem b4aa3.. : ∀ x0 x1 x2 x3 x4 . SNo x0SNo x1SNo x2SNo x3SNo x4mul_SNo x0 (mul_SNo x1 (mul_SNo x2 (mul_SNo x3 x4))) = mul_SNo x4 (mul_SNo x0 (mul_SNo x1 (mul_SNo x2 x3))) (proof)
Theorem 1b9b9.. : ∀ x0 x1 x2 x3 x4 . SNo x0SNo x1SNo x2SNo x3SNo x4mul_SNo x0 (mul_SNo x1 (mul_SNo x2 (mul_SNo x3 x4))) = mul_SNo x3 (mul_SNo x4 (mul_SNo x0 (mul_SNo x1 x2))) (proof)