Search for blocks/addresses/...

Proofgold Asset

asset id
b5884013e6009c57ecde9c1545b8e718d4622df8ae7a33bd830288be45455bc3
asset hash
910bb879638a96317c21f426277acaba9a931a58eff85a5c30e02c1b1c907031
bday / block
19163
tx
69a30..
preasset
doc published by Pr4zB..
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem 4373b.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u12x1 x2u12)∀ x2 . x2u12prim5 x2 x1u12 (proof)
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem afaa2.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u12∀ x3 . x3u12x1 x2 = x1 x3x2 = x3)∀ x2 . x2u12equip x2 (prim5 x2 x1) (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Theorem 93347.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u12∀ x3 . x3u12x0 (x1 x2) (x1 x3)x0 x2 x3)∀ x2 . x2u12(∀ x3 . x3x2∀ x4 . x4x2not (x0 x3 x4))∀ x3 . x3prim5 x2 x1∀ x4 . x4prim5 x2 x1not (x0 x3 x4) (proof)
Param atleastpatleastp : ιιο
Param setminussetminus : ιιι
Known e8716.. : ∀ x0 . atleastp u2 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0(x2 = x3∀ x4 : ο . x4)x1)x1
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_8_9In_8_9 : 89
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known In_no3cycleIn_no3cycle : ∀ x0 x1 x2 . x0x1x1x2x2x0False
Known fa1e6.. : 910
Known In_no4cycleIn_no4cycle : ∀ x0 x1 x2 x3 . x0x1x1x2x2x3x3x0False
Known 9be62.. : 1011
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Param nat_pnat_p : ιο
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_12nat_12 : nat_p 12
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Theorem 7c829.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . (∀ x2 . x2u12x1 x2u12)(∀ x2 . x2u12∀ x3 . x3u12x1 x2 = x1 x3x2 = x3)(∀ x2 . x2u12∀ x3 . x3u12x0 (x1 x2) (x1 x3)x0 x2 x3)x1 u9 = u8x1 u10 = u11x1 u11 = u9x0 u8 u11∀ x2 . x2u12atleastp u5 x2(∀ x3 . x3x2∀ x4 . x4x2not (x0 x3 x4))atleastp u2 (setminus x2 u8)∀ x3 : ο . (∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u8x4u9x4x3)(∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u8x4u10x4x3)(∀ x4 . x4u12atleastp u5 x4(∀ x5 . x5x4∀ x6 . x6x4not (x0 x5 x6))u9x4u10x4x3)x3 (proof)