Search for blocks/addresses/...
Proofgold Asset
asset id
b5884013e6009c57ecde9c1545b8e718d4622df8ae7a33bd830288be45455bc3
asset hash
910bb879638a96317c21f426277acaba9a931a58eff85a5c30e02c1b1c907031
bday / block
19163
tx
69a30..
preasset
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
4373b..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u12
⟶
x1
x2
∈
u12
)
⟶
∀ x2 .
x2
⊆
u12
⟶
prim5
x2
x1
⊆
u12
(proof)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
afaa2..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
∀ x2 .
x2
⊆
u12
⟶
equip
x2
(
prim5
x2
x1
)
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
93347..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
∀ x2 .
x2
⊆
u12
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
∀ x3 .
x3
∈
prim5
x2
x1
⟶
∀ x4 .
x4
∈
prim5
x2
x1
⟶
not
(
x0
x3
x4
)
(proof)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
e8716..
:
∀ x0 .
atleastp
u2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
)
⟶
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_8_9
In_8_9
:
8
∈
9
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
In_no3cycle
In_no3cycle
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x0
⟶
False
Known
fa1e6..
:
9
∈
10
Known
In_no4cycle
In_no4cycle
:
∀ x0 x1 x2 x3 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x3
⟶
x3
∈
x0
⟶
False
Known
9be62..
:
10
∈
11
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
nat_p
nat_p
:
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_12
nat_12
:
nat_p
12
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Theorem
7c829..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u12
⟶
x1
x2
∈
u12
)
⟶
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
x1
u9
=
u8
⟶
x1
u10
=
u11
⟶
x1
u11
=
u9
⟶
x0
u8
u11
⟶
∀ x2 .
x2
⊆
u12
⟶
atleastp
u5
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
atleastp
u2
(
setminus
x2
u8
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u8
∈
x4
⟶
u9
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u8
∈
x4
⟶
u10
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u9
∈
x4
⟶
u10
∈
x4
⟶
x3
)
⟶
x3
(proof)