Search for blocks/addresses/...
Proofgold Asset
asset id
b688143355df488acc95638e3d5fa62cd52c5489e560b0cb0d8e18fa3d155c99
asset hash
34ca5e34fff351247c6125ee400d6163bab770b5d438904564e5a5f197c5bdb8
bday / block
2357
tx
8964b..
preasset
doc published by
PrGxv..
Known
1dd21..
SetAdjoin_def
:
SetAdjoin
=
λ x1 x2 .
binunion
x1
(
Sing
x2
)
Known
0ce8c..
binunionI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
binunion
x0
x1
)
Theorem
84417..
SetAdjoinI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
SetAdjoin
x0
x1
)
(proof)
Known
eb8b4..
binunionI2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
x2
(
binunion
x0
x1
)
Known
1f15b..
SingI
:
∀ x0 .
In
x0
(
Sing
x0
)
Theorem
163d4..
SetAdjoinI2
:
∀ x0 x1 .
In
x1
(
SetAdjoin
x0
x1
)
(proof)
Known
f9974..
binunionE_cases
:
∀ x0 x1 x2 .
In
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
Known
9ae18..
SingE
:
∀ x0 x1 .
In
x1
(
Sing
x0
)
⟶
x1
=
x0
Theorem
07300..
SetAdjoinE
:
∀ x0 x1 x2 .
In
x2
(
SetAdjoin
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
x2
=
x1
⟶
x3
)
⟶
x3
(proof)
Known
56b90..
PNoEq__def
:
PNoEq_
=
λ x1 .
λ x2 x3 :
ι → ο
.
∀ x4 .
In
x4
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
Theorem
e5ee4..
PNoEq__I
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
In
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
PNoEq_
x0
x1
x2
(proof)
Theorem
f5b7e..
PNoEq__E
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 : ο .
(
(
∀ x4 .
In
x4
x0
⟶
iff
(
x1
x4
)
(
x2
x4
)
)
⟶
x3
)
⟶
PNoEq_
x0
x1
x2
⟶
x3
(proof)
Known
aebc2..
PNoLt__def
:
PNoLt_
=
λ x1 .
λ x2 x3 :
ι → ο
.
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x1
)
(
and
(
and
(
PNoEq_
x5
x2
x3
)
(
not
(
x2
x5
)
)
)
(
x3
x5
)
)
⟶
x4
)
⟶
x4
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
f6404..
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
e7258..
PNoLt__I
:
∀ x0 x1 .
In
x0
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
not
(
x2
x0
)
⟶
x3
x0
⟶
PNoLt_
x1
x2
x3
(proof)
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
cd094..
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
3e48a..
PNoLt__E
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
PNoLt_
x0
x1
x2
⟶
x3
(proof)
Known
8cb38..
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Known
7adfb..
PNoLt_trichotomy_or
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
PNoLt
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
PNoLt
x1
x3
x0
x2
)
Theorem
ebdc6..
PNoLt_trichotomy_or_impred
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
∀ x4 : ο .
(
PNoLt
x0
x2
x1
x3
⟶
x4
)
⟶
(
x0
=
x1
⟶
PNoEq_
x0
x2
x3
⟶
x4
)
⟶
(
PNoLt
x1
x3
x0
x2
⟶
x4
)
⟶
x4
(proof)
Known
22e4a..
PNoLe_antisym
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoLe
x1
x3
x0
x2
⟶
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
Theorem
54baf..
PNoLe_antisym_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoLe
x1
x3
x0
x2
⟶
∀ x4 : ο .
(
x0
=
x1
⟶
PNoEq_
x0
x2
x3
⟶
x4
)
⟶
x4
(proof)
Known
92a82..
PNo_downc_def
:
PNo_downc
=
λ x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
∀ x4 : ο .
(
∀ x5 .
and
(
ordinal
x5
)
(
∀ x6 : ο .
(
∀ x7 :
ι → ο
.
and
(
x1
x5
x7
)
(
PNoLe
x2
x3
x5
x7
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Theorem
abb07..
PNo_downc_I
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
∀ x3 .
∀ x4 :
ι → ο
.
ordinal
x0
⟶
x2
x0
x1
⟶
PNoLe
x3
x4
x0
x1
⟶
PNo_downc
x2
x3
x4
(proof)
Theorem
856d5..
PNo_downc_E
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x0
x4
x5
⟶
PNoLe
x1
x2
x4
x5
⟶
x3
)
⟶
PNo_downc
x0
x1
x2
⟶
x3
(proof)
Known
e06f2..
PNo_upc_def
:
PNo_upc
=
λ x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
∀ x4 : ο .
(
∀ x5 .
and
(
ordinal
x5
)
(
∀ x6 : ο .
(
∀ x7 :
ι → ο
.
and
(
x1
x5
x7
)
(
PNoLe
x5
x7
x2
x3
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Theorem
09507..
PNo_upc_I
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
∀ x3 .
∀ x4 :
ι → ο
.
ordinal
x0
⟶
x2
x0
x1
⟶
PNoLe
x0
x1
x3
x4
⟶
PNo_upc
x2
x3
x4
(proof)
Theorem
9ad5c..
PNo_upc_E
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x0
x4
x5
⟶
PNoLe
x4
x5
x1
x2
⟶
x3
)
⟶
PNo_upc
x0
x1
x2
⟶
x3
(proof)
Known
ae672..
PNoLe_ref
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLe
x0
x1
x0
x1
Theorem
2c3b7..
PNo_downc_ref
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
PNo_downc
x0
x1
x2
(proof)
Theorem
2d1be..
PNo_upc_ref
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
ordinal
x1
⟶
∀ x2 :
ι → ο
.
x0
x1
x2
⟶
PNo_upc
x0
x1
x2
(proof)
Known
e23c1..
PNoLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLe
x0
x3
x2
x5
Theorem
371b3..
PNoLe_downc
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
PNo_downc
x0
x1
x3
⟶
PNoLe
x2
x4
x1
x3
⟶
PNo_downc
x0
x2
x4
(proof)
Theorem
62abf..
PNoLe_upc
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
ordinal
x1
⟶
ordinal
x2
⟶
PNo_upc
x0
x1
x3
⟶
PNoLe
x1
x3
x2
x4
⟶
PNo_upc
x0
x2
x4
(proof)
Definition
3f2f5..
PNoLt_pwise
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
x0
x2
x3
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x1
x4
x5
⟶
PNoLt
x2
x3
x4
x5
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
289e1..
PNoLt_irref_b
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLt
x0
x1
x0
x1
⟶
False
Known
a6669..
PNoLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
Known
3c4f3..
PNoLeLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
Known
13ed3..
PNoLeI2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoLe
x0
x1
x0
x2
Known
d0c10..
PNoLtLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
Theorem
aaa5d..
PNoLt_pwise_downc_upc
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
3f2f5..
x0
x1
⟶
3f2f5..
(
PNo_downc
x0
)
(
PNo_upc
x1
)
(proof)
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
e3ec9..
neq_0_1
:
not
(
0
=
1
)
Known
6e976..
TransSetEb
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
In
x2
x0
Known
0978b..
In_0_1
:
In
0
1
Theorem
a1968..
not_TransSet_Sing1
:
TransSet
(
Sing
1
)
⟶
False
(proof)
Known
339db..
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Theorem
01d96..
not_ordinal_Sing1
:
ordinal
(
Sing
1
)
⟶
False
(proof)
Known
14977..
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
ordinal
x1
Theorem
29576..
tagged_not_ordinal
:
∀ x0 .
ordinal
(
SetAdjoin
x0
(
Sing
1
)
)
⟶
False
(proof)
Theorem
9f8b9..
tagged_notin_ordinal
:
∀ x0 x1 .
ordinal
x0
⟶
In
(
SetAdjoin
x1
(
Sing
1
)
)
x0
⟶
False
(proof)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Theorem
4c588..
tagged_eqE_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
SetAdjoin
x0
(
Sing
1
)
=
SetAdjoin
x1
(
Sing
1
)
⟶
Subq
x0
x1
(proof)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
c908d..
tagged_eqE_eq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SetAdjoin
x0
(
Sing
1
)
=
SetAdjoin
x1
(
Sing
1
)
⟶
x0
=
x1
(proof)
Known
0f096..
ReplE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
a9755..
tagged_ReplE
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
In
(
SetAdjoin
x1
(
Sing
1
)
)
(
Repl
x0
(
λ x2 .
SetAdjoin
x2
(
Sing
1
)
)
)
⟶
In
x1
x0
(proof)
Theorem
e995a..
ordinal_notin_tagged_Repl
:
∀ x0 x1 .
ordinal
x0
⟶
In
x0
(
Repl
x1
(
λ x2 .
SetAdjoin
x2
(
Sing
1
)
)
)
⟶
False
(proof)
Known
e46d9..
SNoElts__def
:
SNoElts_
=
λ x1 .
binunion
x1
(
Repl
x1
(
λ x2 .
SetAdjoin
x2
(
Sing
1
)
)
)
Theorem
92d43..
SNoElts__I1
:
∀ x0 x1 .
In
x1
x0
⟶
In
x1
(
SNoElts_
x0
)
(proof)
Known
f1bf4..
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
(
Repl
x0
x1
)
Theorem
dbfee..
SNoElts__I2
:
∀ x0 x1 .
In
x1
x0
⟶
In
(
SetAdjoin
x1
(
Sing
1
)
)
(
SNoElts_
x0
)
(proof)
Theorem
eb8f8..
SNoElts__E
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
In
x2
x0
⟶
x1
x2
)
⟶
(
∀ x2 .
In
x2
x0
⟶
x1
(
SetAdjoin
x2
(
Sing
1
)
)
)
⟶
∀ x2 .
In
x2
(
SNoElts_
x0
)
⟶
x1
x2
(proof)
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
aabcd..
SNoElts_mon
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
(
SNoElts_
x0
)
(
SNoElts_
x1
)
(proof)
Known
55472..
SNo__def
:
SNo_
=
λ x1 x2 .
and
(
Subq
x2
(
SNoElts_
x1
)
)
(
∀ x3 .
In
x3
x1
⟶
exactly1of2
(
In
(
SetAdjoin
x3
(
Sing
1
)
)
x2
)
(
In
x3
x2
)
)
Theorem
4abfb..
SNo__I
:
∀ x0 x1 .
Subq
x1
(
SNoElts_
x0
)
⟶
(
∀ x2 .
In
x2
x0
⟶
exactly1of2
(
In
(
SetAdjoin
x2
(
Sing
1
)
)
x1
)
(
In
x2
x1
)
)
⟶
SNo_
x0
x1
(proof)
Theorem
7b10a..
SNo__E
:
∀ x0 x1 .
∀ x2 : ο .
(
Subq
x1
(
SNoElts_
x0
)
⟶
(
∀ x3 .
In
x3
x0
⟶
exactly1of2
(
In
(
SetAdjoin
x3
(
Sing
1
)
)
x1
)
(
In
x3
x1
)
)
⟶
x2
)
⟶
SNo_
x0
x1
⟶
x2
(proof)
Known
8856d..
PSNo_def
:
PSNo
=
λ x1 .
λ x2 :
ι → ο
.
binunion
(
Sep
x1
x2
)
(
ReplSep
x1
(
λ x3 .
not
(
x2
x3
)
)
(
λ x3 .
SetAdjoin
x3
(
Sing
1
)
)
)
Known
dab1f..
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
x1
x2
⟶
In
x2
(
Sep
x0
x1
)
Theorem
919d0..
PSNo_I1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
x1
x2
⟶
In
x2
(
PSNo
x0
x1
)
(proof)
Known
9fdc4..
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
x0
⟶
x1
x3
⟶
In
(
x2
x3
)
(
ReplSep
x0
x1
x2
)
Theorem
e6dfe..
PSNo_I2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
not
(
x1
x2
)
⟶
In
(
SetAdjoin
x2
(
Sing
1
)
)
(
PSNo
x0
x1
)
(proof)
Known
aa3f4..
SepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
65d0d..
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
(
ReplSep
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
In
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
9e1f7..
PSNo_E
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
⟶
x2
x3
)
⟶
(
∀ x3 .
In
x3
x0
⟶
not
(
x1
x3
)
⟶
x2
(
SetAdjoin
x3
(
Sing
1
)
)
)
⟶
∀ x3 .
In
x3
(
PSNo
x0
x1
)
⟶
x2
x3
(proof)
Known
32c82..
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
2fcd7..
PNoEq_PSNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNoEq_
x0
(
λ x2 .
In
x2
(
PSNo
x0
x1
)
)
x1
(proof)
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Known
e4955..
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
c603f..
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Theorem
ccc82..
SNo_PSNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
SNo_
x0
(
PSNo
x0
x1
)
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
9001d..
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
bffec..
SNo_PSNo_eta_
:
∀ x0 x1 .
ordinal
x0
⟶
SNo_
x0
x1
⟶
x1
=
PSNo
x0
(
λ x3 .
In
x3
x1
)
(proof)
Known
450e1..
SNo_def
:
SNo
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
ordinal
x3
)
(
SNo_
x3
x1
)
⟶
x2
)
⟶
x2
Theorem
f8a9f..
SNo_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo_
x0
x1
⟶
SNo
x1
(proof)
Theorem
ba9d6..
SNo_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 : ο .
(
∀ x2 .
ordinal
x2
⟶
SNo_
x2
x0
⟶
x1
)
⟶
x1
(proof)
Theorem
21c1b..
SNoLev_uniq_Subq
:
∀ x0 x1 x2 .
ordinal
x1
⟶
ordinal
x2
⟶
SNo_
x1
x0
⟶
SNo_
x2
x0
⟶
Subq
x1
x2
(proof)
Theorem
da796..
SNoLev_uniq
:
∀ x0 x1 x2 .
ordinal
x1
⟶
ordinal
x2
⟶
SNo_
x1
x0
⟶
SNo_
x2
x0
⟶
x1
=
x2
(proof)
Known
06156..
SNoLev_def
:
SNoLev
=
λ x1 .
Eps_i
(
λ x2 .
and
(
ordinal
x2
)
(
SNo_
x2
x1
)
)
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
defb9..
SNoLev_prop
:
∀ x0 .
SNo
x0
⟶
and
(
ordinal
(
SNoLev
x0
)
)
(
SNo_
(
SNoLev
x0
)
x0
)
(proof)
Theorem
d259b..
SNoLev_prop_impred
:
∀ x0 .
SNo
x0
⟶
∀ x1 : ο .
(
ordinal
(
SNoLev
x0
)
⟶
SNo_
(
SNoLev
x0
)
x0
⟶
x1
)
⟶
x1
(proof)
Theorem
e3541..
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
(proof)
Theorem
93516..
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
(proof)
Theorem
a923b..
SNo_PSNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
PSNo
(
SNoLev
x0
)
(
λ x2 .
In
x2
x0
)
(proof)
Theorem
7e47a..
SNoLev_PSNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
SNoLev
(
PSNo
x0
x1
)
=
x0
(proof)
Known
50594..
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Known
93720..
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Theorem
4e72d..
SNo_Subq
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
Subq
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
(
∀ x2 .
In
x2
(
SNoLev
x0
)
⟶
iff
(
In
x2
x0
)
(
In
x2
x1
)
)
⟶
Subq
x0
x1
(proof)
Known
ebfb4..
SNoEq__def
:
SNoEq_
=
λ x1 x2 x3 .
PNoEq_
x1
(
λ x4 .
In
x4
x2
)
(
λ x4 .
In
x4
x3
)
Theorem
fcab6..
SNoEq_I
:
∀ x0 x1 x2 .
PNoEq_
x0
(
λ x3 .
In
x3
x1
)
(
λ x3 .
In
x3
x2
)
⟶
SNoEq_
x0
x1
x2
(proof)
Theorem
f2976..
SNoEq_E
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
PNoEq_
x0
(
λ x3 .
In
x3
x1
)
(
λ x3 .
In
x3
x2
)
(proof)
Theorem
42e4e..
SNoEq_E
:
∀ x0 x1 x2 .
∀ x3 : ο .
(
PNoEq_
x0
(
λ x4 .
In
x4
x1
)
(
λ x4 .
In
x4
x2
)
⟶
x3
)
⟶
SNoEq_
x0
x1
x2
⟶
x3
(proof)
Theorem
98d3d..
SNoEq_E1
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
In
x3
x0
⟶
In
x3
x1
⟶
In
x3
x2
(proof)
Theorem
d996f..
SNoEq_E2
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
In
x3
x0
⟶
In
x3
x2
⟶
In
x3
x1
(proof)
Known
d26f4..
PNoEq_antimon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
In
x3
x2
⟶
PNoEq_
x2
x0
x1
⟶
PNoEq_
x3
x0
x1
Theorem
d1804..
SNoEq_antimon_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 x3 .
SNoEq_
x0
x2
x3
⟶
SNoEq_
x1
x2
x3
(proof)
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
3d208..
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Theorem
443ed..
SNo_eq
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
=
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
x0
=
x1
(proof)
Known
3e1b8..
SNoLt_def
:
SNoLt
=
λ x1 x2 .
PNoLt
(
SNoLev
x1
)
(
λ x3 .
In
x3
x1
)
(
SNoLev
x2
)
(
λ x3 .
In
x3
x2
)
Theorem
3014e..
SNoLtI
:
∀ x0 x1 .
PNoLt
(
SNoLev
x0
)
(
λ x2 .
In
x2
x0
)
(
SNoLev
x1
)
(
λ x2 .
In
x2
x1
)
⟶
SNoLt
x0
x1
(proof)
Theorem
d2f9b..
SNoLtE
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
PNoLt
(
SNoLev
x0
)
(
λ x2 .
In
x2
x0
)
(
SNoLev
x1
)
(
λ x2 .
In
x2
x1
)
(proof)
Theorem
4b3ee..
SNoLtE
:
∀ x0 x1 .
∀ x2 : ο .
(
PNoLt
(
SNoLev
x0
)
(
λ x3 .
In
x3
x0
)
(
SNoLev
x1
)
(
λ x3 .
In
x3
x1
)
⟶
x2
)
⟶
SNoLt
x0
x1
⟶
x2
(proof)
Known
375e0..
SNoLe_def
:
SNoLe
=
λ x1 x2 .
PNoLe
(
SNoLev
x1
)
(
λ x3 .
In
x3
x1
)
(
SNoLev
x2
)
(
λ x3 .
In
x3
x2
)
Theorem
3983e..
SNoLeI
:
∀ x0 x1 .
PNoLe
(
SNoLev
x0
)
(
λ x2 .
In
x2
x0
)
(
SNoLev
x1
)
(
λ x2 .
In
x2
x1
)
⟶
SNoLe
x0
x1
(proof)
Theorem
359b8..
SNoLeE
:
∀ x0 x1 .
SNoLe
x0
x1
⟶
PNoLe
(
SNoLev
x0
)
(
λ x2 .
In
x2
x0
)
(
SNoLev
x1
)
(
λ x2 .
In
x2
x1
)
(proof)
Theorem
14de9..
SNoLeE
:
∀ x0 x1 .
∀ x2 : ο .
(
PNoLe
(
SNoLev
x0
)
(
λ x3 .
In
x3
x0
)
(
SNoLev
x1
)
(
λ x3 .
In
x3
x1
)
⟶
x2
)
⟶
SNoLe
x0
x1
⟶
x2
(proof)
Known
478b3..
PNoLeI1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoLe
x0
x2
x1
x3
Theorem
904b5..
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
(proof)
Known
806be..
PNoLeE
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt
x0
x2
x1
x3
⟶
x4
)
⟶
(
x0
=
x1
⟶
PNoEq_
x0
x2
x3
⟶
x4
)
⟶
x4
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
28d43..
SNoLeE_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
(proof)
Known
5d346..
PNoEq_ref_
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
x1
Theorem
5193e..
SNoEq_ref_
:
∀ x0 x1 .
SNoEq_
x0
x1
x1
(proof)
Known
b96d4..
PNoEq_sym_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x1
Theorem
125cd..
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
(proof)
Known
f3029..
PNoEq_tra_
:
∀ x0 .
∀ x1 x2 x3 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x3
⟶
PNoEq_
x0
x1
x3
Theorem
fa016..
SNoEq_tra_
:
∀ x0 x1 x2 x3 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x3
⟶
SNoEq_
x0
x1
x3
(proof)
Known
e0ec6..
PNoLtE
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt_
(
binintersect
x0
x1
)
x2
x3
⟶
x4
)
⟶
(
In
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
x4
)
⟶
(
In
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
x4
)
⟶
x4
Known
44198..
PNoLt_E_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
x3
Known
9c451..
binintersectE_impred
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
In
x2
x1
⟶
x3
)
⟶
x3
Known
ae95b..
PNoLtI3
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
In
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
PNoLt
x0
x2
x1
x3
Known
67fa1..
PNoLtI2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
In
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
PNoLt
x0
x2
x1
x3
Known
6abef..
nIn_I
:
∀ x0 x1 .
not
(
In
x0
x1
)
⟶
nIn
x0
x1
Theorem
e884b..
SNoLtE3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
In
(
SNoLev
x3
)
(
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
In
(
SNoLev
x3
)
x1
⟶
x2
)
⟶
(
In
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
In
(
SNoLev
x0
)
x1
⟶
x2
)
⟶
(
In
(
SNoLev
x1
)
(
SNoLev
x0
)
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
ac8dd..
SNoLtI2
:
∀ x0 x1 .
In
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
In
(
SNoLev
x0
)
x1
⟶
SNoLt
x0
x1
(proof)
Known
f0129..
nIn_E
:
∀ x0 x1 .
nIn
x0
x1
⟶
not
(
In
x0
x1
)
Theorem
94072..
SNoLtI3
:
∀ x0 x1 .
In
(
SNoLev
x1
)
(
SNoLev
x0
)
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
SNoLt
x0
x1
(proof)
Known
96df0..
PNoLt_irref
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt
x0
x1
x0
x1
)
Theorem
3de72..
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
(proof)
Known
cb243..
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
8aff3..
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
a4277..
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
38ea3..
SNoLt_trichotomy_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
)
(
SNoLt
x1
x0
)
(proof)
Theorem
12d25..
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
b2f09..
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
(proof)
Theorem
c44b9..
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
(proof)
Theorem
11181..
SNoLe_antisym
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x0
⟶
x0
=
x1
(proof)
Theorem
49ec6..
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
(proof)
Theorem
33812..
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
(proof)
Theorem
64763..
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
(proof)
Theorem
541dd..
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
c54bb..
SNoLtLe_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
SNoLe
x1
x0
⟶
x2
)
⟶
x2
(proof)
Known
492f5..
PNoEqLt_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x0
x2
x1
x4
Known
76102..
PNoLtEq_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
PNoLt
x0
x2
x1
x4
Theorem
e0163..
SNoLt_PSNo_PNoLt
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
(
PSNo
x0
x2
)
(
PSNo
x1
x3
)
⟶
PNoLt
x0
x2
x1
x3
(proof)
Theorem
a46f6..
PNoLt_SNoLt_PSNo
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
PNoLt
x0
x2
x1
x3
⟶
SNoLt
(
PSNo
x0
x2
)
(
PSNo
x1
x3
)
(proof)