Search for blocks/addresses/...
Proofgold Asset
asset id
c17d1b1a54d40407ac26bc350279409ba30fda450e338fecf31ddc9591da0214
asset hash
b753c2207f47124418de57e7af244912b86fa4d585cb23ac8a99a89635e21a86
bday / block
1889
tx
5e00d..
preasset
doc published by
PrGxv..
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Known
e85f6..
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
2a3a3..
In_irref_b
:
∀ x0 .
In
x0
x0
⟶
False
(proof)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
73be6..
neq_i_E
:
∀ x0 x1 .
not
(
x0
=
x1
)
⟶
x0
=
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
d5300..
neq_i_sym_E
:
∀ x0 x1 .
not
(
x0
=
x1
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
(proof)
Known
b515a..
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
71a8d..
In_0_4
:
In
0
4
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
c2555..
tuple_4_0_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
0
=
x0
(proof)
Known
efe66..
In_1_4
:
In
1
4
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
a871f..
neq_1_0
:
not
(
1
=
0
)
Theorem
751a0..
tuple_4_1_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
1
=
x1
(proof)
Known
884f0..
In_2_4
:
In
2
4
Known
db5d7..
neq_2_0
:
not
(
2
=
0
)
Known
56778..
neq_2_1
:
not
(
2
=
1
)
Theorem
0a38e..
tuple_4_2_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
2
=
x2
(proof)
Known
d9ca3..
In_3_4
:
In
3
4
Known
97f79..
neq_3_0
:
not
(
3
=
0
)
Known
28881..
neq_3_1
:
not
(
3
=
1
)
Known
f1fc4..
neq_3_2
:
not
(
3
=
2
)
Theorem
9ff59..
tuple_4_3_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
3
=
x3
(proof)
Known
5ec9a..
In_0_5
:
In
0
5
Theorem
e53d3..
tuple_5_0_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
0
=
x0
(proof)
Known
53692..
In_1_5
:
In
1
5
Theorem
ad54e..
tuple_5_1_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
1
=
x1
(proof)
Known
7f632..
In_2_5
:
In
2
5
Theorem
3b439..
tuple_5_2_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
2
=
x2
(proof)
Known
c3428..
In_3_5
:
In
3
5
Theorem
0bd54..
tuple_5_3_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
3
=
x3
(proof)
Known
55f57..
In_4_5
:
In
4
5
Known
fc9ff..
neq_4_0
:
not
(
4
=
0
)
Known
34131..
neq_4_1
:
not
(
4
=
1
)
Known
547fc..
neq_4_2
:
not
(
4
=
2
)
Known
bfbcc..
neq_4_3
:
not
(
4
=
3
)
Theorem
75457..
tuple_5_4_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
4
=
x4
(proof)
Known
0f549..
In_0_6
:
In
0
6
Theorem
1d767..
tuple_6_0_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
0
=
x0
(proof)
Known
e5e7b..
In_1_6
:
In
1
6
Theorem
116b4..
tuple_6_1_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
1
=
x1
(proof)
Known
c6359..
In_2_6
:
In
2
6
Theorem
d72fb..
tuple_6_2_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
2
=
x2
(proof)
Known
d5bd4..
In_3_6
:
In
3
6
Theorem
f0215..
tuple_6_3_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
3
=
x3
(proof)
Known
99a7f..
In_4_6
:
In
4
6
Theorem
5d974..
tuple_6_4_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
4
=
x4
(proof)
Known
ad142..
In_5_6
:
In
5
6
Known
3d58e..
neq_5_0
:
not
(
5
=
0
)
Known
03b32..
neq_5_1
:
not
(
5
=
1
)
Known
b24f1..
neq_5_2
:
not
(
5
=
2
)
Known
ab3a6..
neq_5_3
:
not
(
5
=
3
)
Known
8140f..
neq_5_4
:
not
(
5
=
4
)
Theorem
9b8de..
tuple_6_5_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
5
=
x5
(proof)
Known
6516d..
In_0_7
:
In
0
7
Theorem
f0beb..
tuple_7_0_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
0
=
x0
(proof)
Known
ed9ed..
In_1_7
:
In
1
7
Theorem
19883..
tuple_7_1_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
1
=
x1
(proof)
Known
e6c7c..
In_2_7
:
In
2
7
Theorem
e20cd..
tuple_7_2_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
2
=
x2
(proof)
Known
dc43c..
In_3_7
:
In
3
7
Theorem
85904..
tuple_7_3_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
3
=
x3
(proof)
Known
fb74e..
In_4_7
:
In
4
7
Theorem
5a2b7..
tuple_7_4_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
4
=
x4
(proof)
Known
59629..
In_5_7
:
In
5
7
Theorem
07dc0..
tuple_7_5_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
5
=
x5
(proof)
Known
14a1c..
In_6_7
:
In
6
7
Known
4193c..
neq_6_0
:
not
(
6
=
0
)
Known
53f92..
neq_6_1
:
not
(
6
=
1
)
Known
f4b9c..
neq_6_2
:
not
(
6
=
2
)
Known
96787..
neq_6_3
:
not
(
6
=
3
)
Known
2a680..
neq_6_4
:
not
(
6
=
4
)
Known
3a5c9..
neq_6_5
:
not
(
6
=
5
)
Theorem
37a40..
tuple_7_6_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
7
(
λ x8 .
If_i
(
x8
=
0
)
x0
(
If_i
(
x8
=
1
)
x1
(
If_i
(
x8
=
2
)
x2
(
If_i
(
x8
=
3
)
x3
(
If_i
(
x8
=
4
)
x4
(
If_i
(
x8
=
5
)
x5
x6
)
)
)
)
)
)
)
6
=
x6
(proof)
Known
57d5b..
In_0_8
:
In
0
8
Theorem
0e230..
tuple_8_0_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
0
=
x0
(proof)
Known
4c0a3..
In_1_8
:
In
1
8
Theorem
c92ea..
tuple_8_1_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
1
=
x1
(proof)
Known
b8348..
In_2_8
:
In
2
8
Theorem
bb098..
tuple_8_2_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
2
=
x2
(proof)
Known
ace10..
In_3_8
:
In
3
8
Theorem
b932d..
tuple_8_3_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
3
=
x3
(proof)
Known
e08a8..
In_4_8
:
In
4
8
Theorem
34a8e..
tuple_8_4_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
4
=
x4
(proof)
Known
9ad9e..
In_5_8
:
In
5
8
Theorem
721fb..
tuple_8_5_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
5
=
x5
(proof)
Known
e821f..
In_6_8
:
In
6
8
Theorem
8bc91..
tuple_8_6_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
6
=
x6
(proof)
Known
879be..
In_7_8
:
In
7
8
Known
ca789..
neq_7_0
:
not
(
7
=
0
)
Known
6a87a..
neq_7_1
:
not
(
7
=
1
)
Known
46692..
neq_7_2
:
not
(
7
=
2
)
Known
c0553..
neq_7_3
:
not
(
7
=
3
)
Known
21c2e..
neq_7_4
:
not
(
7
=
4
)
Known
fdff8..
neq_7_5
:
not
(
7
=
5
)
Known
0a1a6..
neq_7_6
:
not
(
7
=
6
)
Theorem
c9eee..
tuple_8_7_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
ap
(
lam
8
(
λ x9 .
If_i
(
x9
=
0
)
x0
(
If_i
(
x9
=
1
)
x1
(
If_i
(
x9
=
2
)
x2
(
If_i
(
x9
=
3
)
x3
(
If_i
(
x9
=
4
)
x4
(
If_i
(
x9
=
5
)
x5
(
If_i
(
x9
=
6
)
x6
x7
)
)
)
)
)
)
)
)
7
=
x7
(proof)
Known
fda50..
In_0_9
:
In
0
9
Theorem
9110d..
tuple_9_0_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
0
=
x0
(proof)
Known
9744a..
In_1_9
:
In
1
9
Theorem
ecdb1..
tuple_9_1_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
1
=
x1
(proof)
Known
2df93..
In_2_9
:
In
2
9
Theorem
d8937..
tuple_9_2_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
2
=
x2
(proof)
Known
c585f..
In_3_9
:
In
3
9
Theorem
c1e22..
tuple_9_3_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
3
=
x3
(proof)
Known
8ee2c..
In_4_9
:
In
4
9
Theorem
d7f59..
tuple_9_4_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
4
=
x4
(proof)
Known
e48d3..
In_5_9
:
In
5
9
Theorem
9daae..
tuple_9_5_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
5
=
x5
(proof)
Known
35438..
In_6_9
:
In
6
9
Theorem
9fc15..
tuple_9_6_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
6
=
x6
(proof)
Known
3f605..
In_7_9
:
In
7
9
Theorem
daaf4..
tuple_9_7_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
7
=
x7
(proof)
Known
dab47..
In_8_9
:
In
8
9
Known
c1d23..
neq_8_0
:
not
(
8
=
0
)
Known
3fd1f..
neq_8_1
:
not
(
8
=
1
)
Known
0aafe..
neq_8_2
:
not
(
8
=
2
)
Known
4862b..
neq_8_3
:
not
(
8
=
3
)
Known
e99bd..
neq_8_4
:
not
(
8
=
4
)
Known
c7589..
neq_8_5
:
not
(
8
=
5
)
Known
85418..
neq_8_6
:
not
(
8
=
6
)
Known
0ff51..
neq_8_7
:
not
(
8
=
7
)
Theorem
544fd..
tuple_9_8_eq
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
ap
(
lam
9
(
λ x10 .
If_i
(
x10
=
0
)
x0
(
If_i
(
x10
=
1
)
x1
(
If_i
(
x10
=
2
)
x2
(
If_i
(
x10
=
3
)
x3
(
If_i
(
x10
=
4
)
x4
(
If_i
(
x10
=
5
)
x5
(
If_i
(
x10
=
6
)
x6
(
If_i
(
x10
=
7
)
x7
x8
)
)
)
)
)
)
)
)
)
8
=
x8
(proof)
Known
2d998..
tuple_4_eta
:
∀ x0 x1 x2 x3 .
lam
4
(
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
)
=
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
Known
3c3a9..
setexp_def
:
setexp
=
λ x1 x2 .
Pi
x2
(
λ x3 .
x1
)
Known
25543..
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
In
(
x2
x3
)
(
x1
x3
)
)
⟶
In
(
lam
x0
x2
)
(
Pi
x0
x1
)
Known
8b3d1..
cases_4
:
∀ x0 .
In
x0
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Theorem
75bd6..
tuple_4_in_A_4
:
∀ x0 x1 x2 x3 x4 .
In
x0
x4
⟶
In
x1
x4
⟶
In
x2
x4
⟶
In
x3
x4
⟶
In
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
(
setexp
x4
4
)
(proof)
Known
398e3..
PigeonHole_nat_bij
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
x0
)
⟶
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
Known
21479..
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
36841..
nat_2
:
nat_p
2
Theorem
e56d1..
tuple_4_bij_4
:
∀ x0 x1 x2 x3 .
In
x0
4
⟶
In
x1
4
⟶
In
x2
4
⟶
In
x3
4
⟶
not
(
x0
=
x1
)
⟶
not
(
x0
=
x2
)
⟶
not
(
x0
=
x3
)
⟶
not
(
x1
=
x2
)
⟶
not
(
x1
=
x3
)
⟶
not
(
x2
=
x3
)
⟶
bij
4
4
(
ap
(
lam
4
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
(
If_i
(
x4
=
2
)
x2
x3
)
)
)
)
)
(proof)
Known
7022c..
V__def
:
V_
=
In_rec_poly_i
(
λ x1 .
λ x2 :
ι → ι
.
famunion
x1
(
λ x3 .
Power
(
x2
x3
)
)
)
Known
f78bc..
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_poly_i
x0
x1
=
x0
x1
(
In_rec_poly_i
x0
)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
390bb..
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
famunion
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
In
x2
(
x1
x4
)
)
⟶
x3
)
⟶
x3
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
8f8c2..
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
In
x2
x0
⟶
In
x3
(
x1
x2
)
⟶
In
x3
(
famunion
x0
x1
)
Theorem
8c6bb..
V_eq
:
∀ x0 .
V_
x0
=
famunion
x0
(
λ x2 .
Power
(
V_
x2
)
)
(proof)
Known
2d44a..
PowerI
:
∀ x0 x1 .
Subq
x1
x0
⟶
In
x1
(
Power
x0
)
Theorem
b5461..
V_I
:
∀ x0 x1 x2 .
In
x1
x2
⟶
Subq
x0
(
V_
x1
)
⟶
In
x0
(
V_
x2
)
(proof)
Known
ae89b..
PowerE
:
∀ x0 x1 .
In
x1
(
Power
x0
)
⟶
Subq
x1
x0
Theorem
10ff6..
V_E
:
∀ x0 x1 .
In
x0
(
V_
x1
)
⟶
∀ x2 : ο .
(
∀ x3 .
In
x3
x1
⟶
Subq
x0
(
V_
x3
)
⟶
x2
)
⟶
x2
(proof)
Known
61ad0..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
081f3..
V_Subq
:
∀ x0 .
Subq
x0
(
V_
x0
)
(proof)
Known
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
212d0..
V_Subq_2
:
∀ x0 x1 .
Subq
x0
(
V_
x1
)
⟶
Subq
(
V_
x0
)
(
V_
x1
)
(proof)
Theorem
d7210..
V_In
:
∀ x0 x1 .
In
x0
(
V_
x1
)
⟶
In
(
V_
x0
)
(
V_
x1
)
(proof)
Known
3ab01..
xmcases_In
:
∀ x0 x1 .
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
nIn
x0
x1
⟶
x2
)
⟶
x2
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
085e3..
contra_In
:
∀ x0 x1 .
(
nIn
x0
x1
⟶
False
)
⟶
In
x0
x1
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
a0b35..
V_In_or_Subq
:
∀ x0 x1 .
or
(
In
x0
(
V_
x1
)
)
(
Subq
(
V_
x1
)
(
V_
x0
)
)
(proof)
Theorem
f325d..
V_In_or_Subq_2
:
∀ x0 x1 .
or
(
In
(
V_
x0
)
(
V_
x1
)
)
(
Subq
(
V_
x1
)
(
V_
x0
)
)
(proof)
Known
32c82..
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
7b4cf..
iff_refl
:
∀ x0 : ο .
iff
x0
x0
(proof)
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Theorem
3d208..
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
(proof)
Theorem
aced5..
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
(proof)
Known
56b90..
PNoEq__def
:
PNoEq_
=
λ x1 .
λ x2 x3 :
ι → ο
.
∀ x4 .
In
x4
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
Theorem
5d346..
PNoEq_ref_
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
x1
(proof)
Theorem
b96d4..
PNoEq_sym_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x1
(proof)
Theorem
f3029..
PNoEq_tra_
:
∀ x0 .
∀ x1 x2 x3 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x3
⟶
PNoEq_
x0
x1
x3
(proof)
Known
1cf88..
ordinal_TransSet_b
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
In
x2
x0
Theorem
d26f4..
PNoEq_antimon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
In
x3
x2
⟶
PNoEq_
x2
x0
x1
⟶
PNoEq_
x3
x0
x1
(proof)
Known
aebc2..
PNoLt__def
:
PNoLt_
=
λ x1 .
λ x2 x3 :
ι → ο
.
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x1
)
(
and
(
and
(
PNoEq_
x5
x2
x3
)
(
not
(
x2
x5
)
)
)
(
x3
x5
)
)
⟶
x4
)
⟶
x4
Known
cd094..
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
44198..
PNoLt_E_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
x3
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
8b025..
PNoLt_irref_
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt_
x0
x1
x1
)
(proof)
Theorem
f2efd..
PNoLt_irref__b
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLt_
x0
x1
x1
⟶
False
(proof)
Theorem
527c6..
PNoLt_mon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
In
x3
x2
⟶
PNoLt_
x3
x0
x1
⟶
PNoLt_
x2
x0
x1
(proof)
Theorem
5f823..
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
(proof)
Theorem
fcbcf..
not_all_ex_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
not
(
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
68454..
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Known
8cb38..
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Known
f6404..
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
68860..
PNoLt_trichotomy_or_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
or
(
or
(
PNoLt_
x2
x0
x1
)
(
PNoEq_
x2
x0
x1
)
)
(
PNoLt_
x2
x1
x0
)
(proof)
Theorem
d37fd..
PNoLt_trichotomy_or__impred
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 : ο .
(
PNoLt_
x2
x0
x1
⟶
x3
)
⟶
(
PNoEq_
x2
x0
x1
⟶
x3
)
⟶
(
PNoLt_
x2
x1
x0
⟶
x3
)
⟶
x3
(proof)
Known
42117..
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
In
x1
x0
⟶
x2
)
⟶
x2
Known
50594..
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Known
14977..
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
ordinal
x1
Theorem
d2d81..
PNoLt_tra_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 x3 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
PNoLt_
x0
x2
x3
⟶
PNoLt_
x0
x1
x3
(proof)
Known
60e7a..
PNoLt_def
:
PNoLt
=
λ x1 .
λ x2 :
ι → ο
.
λ x3 .
λ x4 :
ι → ο
.
or
(
or
(
PNoLt_
(
binintersect
x1
x3
)
x2
x4
)
(
and
(
and
(
In
x1
x3
)
(
PNoEq_
x1
x2
x4
)
)
(
x4
x1
)
)
)
(
and
(
and
(
In
x3
x1
)
(
PNoEq_
x3
x2
x4
)
)
(
not
(
x2
x3
)
)
)
Known
cb243..
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Theorem
0851f..
PNoLtI1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt_
(
binintersect
x0
x1
)
x2
x3
⟶
PNoLt
x0
x2
x1
x3
(proof)
Known
8aff3..
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Theorem
67fa1..
PNoLtI2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
In
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
PNoLt
x0
x2
x1
x3
(proof)
Known
a4277..
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
ae95b..
PNoLtI3
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
In
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
PNoLt
x0
x2
x1
x3
(proof)
Theorem
e0ec6..
PNoLtE
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt_
(
binintersect
x0
x1
)
x2
x3
⟶
x4
)
⟶
(
In
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
x4
)
⟶
(
In
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
x4
)
⟶
x4
(proof)
Known
8ca5a..
binintersect_idem
:
∀ x0 .
binintersect
x0
x0
=
x0
Theorem
2e96e..
PNoLtE2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt
x0
x1
x0
x2
⟶
PNoLt_
x0
x1
x2
(proof)
Theorem
96df0..
PNoLt_irref
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt
x0
x1
x0
x1
)
(proof)
Theorem
289e1..
PNoLt_irref_b
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLt
x0
x1
x0
x1
⟶
False
(proof)
Known
485cd..
binintersect_Subq_eq_1
:
∀ x0 x1 .
Subq
x0
x1
⟶
binintersect
x0
x1
=
x0
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
6b560..
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Known
4ebb9..
ordinal_binintersect
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binintersect
x0
x1
)
Known
5f38d..
TransSet_def
:
TransSet
=
λ x1 .
∀ x2 .
In
x2
x1
⟶
Subq
x2
x1
Known
339db..
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Theorem
7adfb..
PNoLt_trichotomy_or
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
PNoLt
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
PNoLt
x1
x3
x0
x2
)
(proof)
Known
9c451..
binintersectE_impred
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
In
x2
x1
⟶
x3
)
⟶
x3
Theorem
76102..
PNoLtEq_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
PNoLt
x0
x2
x1
x4
(proof)
Theorem
492f5..
PNoEqLt_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x0
x2
x1
x4
(proof)
Known
dd25c..
binintersectI
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
x1
⟶
In
x2
(
binintersect
x0
x1
)
Theorem
a6669..
PNoLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Known
37ff8..
PNoLe_def
:
PNoLe
=
λ x1 .
λ x2 :
ι → ο
.
λ x3 .
λ x4 :
ι → ο
.
or
(
PNoLt
x1
x2
x3
x4
)
(
and
(
x1
=
x3
)
(
PNoEq_
x1
x2
x4
)
)
Theorem
478b3..
PNoLeI1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLt
x0
x2
x1
x3
⟶
PNoLe
x0
x2
x1
x3
(proof)
Theorem
13ed3..
PNoLeI2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoLe
x0
x1
x0
x2
(proof)
Theorem
806be..
PNoLeE
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt
x0
x2
x1
x3
⟶
x4
)
⟶
(
x0
=
x1
⟶
PNoEq_
x0
x2
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
ae672..
PNoLe_ref
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoLe
x0
x1
x0
x1
(proof)
Theorem
22e4a..
PNoLe_antisym
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoLe
x1
x3
x0
x2
⟶
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
(proof)
Theorem
d0c10..
PNoLtLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Theorem
3c4f3..
PNoLeLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
(proof)
Theorem
3bb25..
PNoEqLe_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
PNoLe
x0
x3
x1
x4
⟶
PNoLe
x0
x2
x1
x4
(proof)
Theorem
3a240..
PNoLeEq_tra
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoLe
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
PNoLe
x0
x2
x1
x4
(proof)
Theorem
e23c1..
PNoLe_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLe
x0
x3
x1
x4
⟶
PNoLe
x1
x4
x2
x5
⟶
PNoLe
x0
x3
x2
x5
(proof)