Search for blocks/addresses/...
Proofgold Asset
asset id
b7979c5a7a4adf8f16755bc4218f7f65323fe2c456a4c18bcfd2f3c9ad204d4c
asset hash
4b7b39ebc970a9576a27afcf69d57f8567c94eb7901fccd7d3fef8c4ac9b4ce7
bday / block
28077
tx
f6c8f..
preasset
doc published by
Pr5Zc..
Known
c0c54..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x2
x8
)
)
)
)
)
Known
b514c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x8
(
x1
x6
(
x1
x5
x9
)
)
)
)
)
)
Theorem
3acd7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
27ff1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Known
45f87..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
=
x1
x3
(
x1
x4
(
x1
x2
x5
)
)
Known
c0e5c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x3
x9
)
)
)
)
)
)
Theorem
b1a1a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
7c3f2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Known
2f105..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x3
x8
)
)
)
)
)
Theorem
456ea..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
eddc6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Known
e21d3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x6
(
x1
x5
x8
)
)
)
)
)
Theorem
1be72..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
c958b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
6e27c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x6
(
x1
x8
(
x1
x5
x9
)
)
)
)
)
)
Theorem
cf32b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
3ea28..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Known
2fc2a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x3
x9
)
)
)
)
)
)
Theorem
ecc01..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
a9956..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
cdf6a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
06215..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Known
0c0cb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x5
(
x1
x6
x8
)
)
)
)
)
Theorem
409c1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
5458a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
a3f08..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x3
(
x1
x5
(
x1
x8
(
x1
x6
x9
)
)
)
)
)
)
Theorem
ec89a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
bad1b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
f5268..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
9eaeb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Known
27200..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x6
x8
)
)
)
)
)
Theorem
a44be..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
f957c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
085fc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
0a0f1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Known
e808b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x8
(
x1
x6
x9
)
)
)
)
)
)
Theorem
89c03..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
5e21e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
8ed72..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
b21f1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
75b00..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
x7
)
)
)
)
Known
c79b2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x8
(
x1
x3
(
x1
x6
x9
)
)
)
)
)
)
Theorem
7777e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x3
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
84276..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x3
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Known
3720e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x4
x9
)
)
)
)
)
)
Theorem
638a5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x3
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
914e1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x3
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
cb657..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x4
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
55f06..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x4
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Known
aa74b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x8
(
x1
x4
(
x1
x3
x9
)
)
)
)
)
)
Theorem
4aaec..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x4
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
46b11..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x4
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Known
e7e34..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x8
(
x1
x6
(
x1
x3
x9
)
)
)
)
)
)
Theorem
918cb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
9493f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
4068e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Theorem
b39fb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Known
fe87a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x3
x8
)
)
)
)
)
Theorem
00c0e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x3
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
36057..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x3
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
0c2b4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x4
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
90a78..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x4
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
4294d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x3
x9
)
)
)
)
)
)
Theorem
1627f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
8e0bb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
38892..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Theorem
27ae7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Known
0efb6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x3
x8
)
)
)
)
)
Theorem
8b41b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x3
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
9ad81..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x3
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Known
52cf5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
x8
)
)
)
)
)
Theorem
37582..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x7
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
689f0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x7
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
f7c9a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x6
x9
)
)
)
)
)
)
Theorem
e3978..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x9
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
7a59a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x9
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Known
67b98..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x8
(
x1
x3
x9
)
)
)
)
)
)
Theorem
3093b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x9
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
ec003..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x4
(
x1
x9
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Known
28c86..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x4
x8
)
)
)
)
)
Theorem
b5dc8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x4
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
f9c1a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x4
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
88eb7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x7
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
c29ec..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x7
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
45ec9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x9
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
96c35..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x9
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Known
3e020..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x8
(
x1
x4
x9
)
)
)
)
)
)
Theorem
3578f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x9
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
87e1b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x9
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Known
03523..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x5
x9
)
)
)
)
)
)
Theorem
0e6d0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x3
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
3cf1b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x3
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
49385..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x3
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
af2dc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x3
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
ac189..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x4
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
25c56..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x4
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
1ff26..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x4
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
92841..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x4
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Known
4e1c3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x8
(
x1
x5
(
x1
x3
x9
)
)
)
)
)
)
Theorem
e5b67..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
2d184..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
88dfc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Theorem
e1df3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Known
6f1b5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x5
(
x1
x3
x8
)
)
)
)
)
Theorem
641b3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x3
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
7854a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x3
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
4a1f9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x4
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
dfaf8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x4
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
4fda7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x5
(
x1
x8
(
x1
x3
x9
)
)
)
)
)
)
Theorem
5b033..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
de9dd..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
96c40..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Theorem
8117c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x3
x4
)
)
)
)
)
)
(proof)
Theorem
12a72..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x3
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
5b794..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x3
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Known
7f03c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x5
x8
)
)
)
)
)
Theorem
ca976..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x6
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Theorem
231c3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x6
(
x1
x9
x3
)
)
)
)
)
)
(proof)
Known
f5ab0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x3
(
x1
x8
(
x1
x5
x9
)
)
)
)
)
)
Theorem
464cc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x9
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
bc337..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x9
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
e02b2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x9
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
dd317..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x4
(
x1
x9
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
fe787..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x4
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
845ef..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x4
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
b57b4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x6
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
0c71e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x6
(
x1
x9
x4
)
)
)
)
)
)
(proof)
Theorem
3aac1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x9
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
bb297..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x9
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
33a8c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x9
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
0a2dd..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x3
(
x1
x9
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Known
81541..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x4
(
x1
x2
(
x1
x8
(
x1
x6
(
x1
x3
(
x1
x5
x9
)
)
)
)
)
)
Theorem
9a385..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x3
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
1916f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x3
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Known
0a2d7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x5
(
x1
x2
(
x1
x8
(
x1
x6
(
x1
x3
(
x1
x4
x9
)
)
)
)
)
)
Theorem
1ab17..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x3
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
c330b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x3
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
5ad8a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x4
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
25315..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
(
x1
x4
(
x1
x6
x3
)
)
)
)
)
)
(proof)