Search for blocks/addresses/...
Proofgold Asset
asset id
ba203a6757def2a5e134c89b860fa7c9ee4e476cb6fc2c9139cb42f4aad15e6a
asset hash
3b5cda9e615a9e29d1649507ca1f7f42de5bbf30aa50355ec5d8de825d4035e6
bday / block
21769
tx
b4e71..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
ce43d..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 :
ι →
ι →
ι →
ι → ο
.
(
∀ x4 .
x0
x4
⟶
∀ x5 .
x1
x5
⟶
∀ x6 .
x0
x6
⟶
∀ x7 .
x0
x7
⟶
not
(
x1
x7
)
⟶
x2
x4
x5
x6
x7
)
⟶
(
∀ x4 x5 x6 x7 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
∀ x8 : ο .
(
x2
x4
x5
x6
x7
⟶
x8
)
⟶
(
x3
x4
x5
x6
x7
⟶
x8
)
⟶
(
x2
x6
x7
x4
x5
⟶
x8
)
⟶
x8
)
⟶
(
∀ x4 x5 x6 x7 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x3
x4
x5
x6
x7
⟶
x3
x6
x7
x4
x5
)
⟶
∀ x4 .
x0
x4
⟶
∀ x5 .
x0
x5
⟶
∀ x6 .
x0
x6
⟶
∀ x7 .
x0
x7
⟶
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
x1
x5
⟶
not
(
x1
x7
)
⟶
not
(
x1
x9
)
⟶
not
(
x1
x11
)
⟶
not
(
x1
x13
)
⟶
not
(
x1
x15
)
⟶
not
(
x3
x4
x5
x6
x7
)
⟶
not
(
x3
x4
x5
x8
x9
)
⟶
not
(
x3
x4
x5
x10
x11
)
⟶
not
(
x3
x4
x5
x12
x13
)
⟶
not
(
x3
x4
x5
x14
x15
)
⟶
not
(
x3
x6
x7
x8
x9
)
⟶
not
(
x3
x6
x7
x10
x11
)
⟶
not
(
x3
x6
x7
x12
x13
)
⟶
not
(
x3
x6
x7
x14
x15
)
⟶
not
(
x3
x8
x9
x10
x11
)
⟶
not
(
x3
x8
x9
x12
x13
)
⟶
not
(
x3
x8
x9
x14
x15
)
⟶
not
(
x3
x10
x11
x12
x13
)
⟶
not
(
x3
x10
x11
x14
x15
)
⟶
not
(
x3
x12
x13
x14
x15
)
⟶
∀ x16 : ο .
(
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
∀ x25 .
x0
x25
⟶
∀ x26 .
x0
x26
⟶
x2
x4
x5
x17
x18
⟶
x2
x17
x18
x19
x20
⟶
x2
x19
x20
x21
x22
⟶
x2
x21
x22
x23
x24
⟶
x2
x23
x24
x25
x26
⟶
not
(
x1
x18
)
⟶
not
(
x1
x20
)
⟶
not
(
x1
x22
)
⟶
not
(
x1
x24
)
⟶
not
(
x1
x26
)
⟶
not
(
x3
x4
x5
x17
x18
)
⟶
not
(
x3
x4
x5
x19
x20
)
⟶
not
(
x3
x4
x5
x21
x22
)
⟶
not
(
x3
x4
x5
x23
x24
)
⟶
not
(
x3
x4
x5
x25
x26
)
⟶
not
(
x3
x17
x18
x19
x20
)
⟶
not
(
x3
x17
x18
x21
x22
)
⟶
not
(
x3
x17
x18
x23
x24
)
⟶
not
(
x3
x17
x18
x25
x26
)
⟶
not
(
x3
x19
x20
x21
x22
)
⟶
not
(
x3
x19
x20
x23
x24
)
⟶
not
(
x3
x19
x20
x25
x26
)
⟶
not
(
x3
x21
x22
x23
x24
)
⟶
not
(
x3
x21
x22
x25
x26
)
⟶
not
(
x3
x23
x24
x25
x26
)
⟶
x16
)
⟶
x16
Known
24237..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
not
(
x1
x8
)
⟶
∀ x9 :
ι → ο
.
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x2
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x7
x9
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x7
x7
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x6
x7
x10
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x7
x7
x10
)
⟶
x9
x2
x6
x4
x6
⟶
x9
x2
x6
x4
x7
⟶
x9
x2
x6
x5
x6
⟶
x9
x2
x6
x5
x7
⟶
x9
x2
x6
x7
x6
⟶
x9
x2
x7
x4
x7
⟶
x9
x2
x7
x5
x7
⟶
x9
x3
x6
x3
x7
⟶
x9
x3
x6
x5
x6
⟶
x9
x3
x6
x5
x7
⟶
x9
x3
x6
x6
x7
⟶
x9
x3
x6
x7
x6
⟶
x9
x3
x7
x5
x7
⟶
x9
x4
x6
x2
x7
⟶
x9
x4
x6
x4
x7
⟶
x9
x5
x6
x2
x7
⟶
x9
x5
x6
x3
x7
⟶
x9
x6
x6
x3
x7
⟶
x9
x7
x6
x2
x7
⟶
x9
x7
x6
x3
x7
⟶
x9
x7
x6
x6
x7
⟶
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x10
x11
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x9
x10
x11
x12
x13
⟶
x9
x12
x13
x10
x11
)
⟶
(
x4
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x6
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x7
⟶
∀ x10 : ο .
x10
)
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x1
x11
)
⟶
not
(
x1
x13
)
⟶
not
(
x1
x15
)
⟶
not
(
x1
x17
)
⟶
not
(
x1
x19
)
⟶
x8
x10
x11
x12
x13
⟶
x8
x12
x13
x14
x15
⟶
x8
x14
x15
x16
x17
⟶
x8
x16
x17
x18
x19
⟶
not
(
x9
x10
x11
x12
x13
)
⟶
not
(
x9
x10
x11
x14
x15
)
⟶
not
(
x9
x10
x11
x16
x17
)
⟶
not
(
x9
x10
x11
x18
x19
)
⟶
not
(
x9
x12
x13
x14
x15
)
⟶
not
(
x9
x12
x13
x16
x17
)
⟶
not
(
x9
x12
x13
x18
x19
)
⟶
not
(
x9
x14
x15
x16
x17
)
⟶
not
(
x9
x14
x15
x18
x19
)
⟶
not
(
x9
x16
x17
x18
x19
)
⟶
∀ x20 : ο .
(
x10
=
x4
⟶
x11
=
x6
⟶
x12
=
x5
⟶
x13
=
x6
⟶
x14
=
x6
⟶
x15
=
x6
⟶
x16
=
x5
⟶
x17
=
x7
⟶
x18
=
x6
⟶
x19
=
x7
⟶
x20
)
⟶
(
x10
=
x5
⟶
x11
=
x6
⟶
x12
=
x6
⟶
x13
=
x6
⟶
x14
=
x4
⟶
x15
=
x7
⟶
x16
=
x5
⟶
x17
=
x7
⟶
x18
=
x6
⟶
x19
=
x7
⟶
x20
)
⟶
x20
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
a83e4..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
not
(
x1
x8
)
⟶
∀ x9 :
ι → ο
.
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
not
(
x1
x6
)
⟶
not
(
x1
x7
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x4
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x2
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x7
x9
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x10
x11
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x9
x10
x11
x12
x13
⟶
x9
x12
x13
x10
x11
)
⟶
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x7
x7
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x6
x7
x10
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x7
x7
x10
)
⟶
x9
x2
x2
x4
x6
⟶
x9
x2
x2
x5
x6
⟶
x9
x3
x2
x4
x6
⟶
x9
x3
x2
x5
x6
⟶
x9
x4
x2
x4
x6
⟶
x9
x4
x2
x5
x7
⟶
x9
x4
x7
x6
x2
⟶
x9
x5
x2
x5
x6
⟶
x9
x6
x2
x6
x7
⟶
x9
x2
x6
x4
x6
⟶
x9
x2
x6
x4
x7
⟶
x9
x2
x6
x5
x6
⟶
x9
x2
x6
x5
x7
⟶
x9
x2
x6
x7
x6
⟶
x9
x2
x7
x4
x7
⟶
x9
x2
x7
x5
x7
⟶
x9
x3
x6
x3
x7
⟶
x9
x3
x6
x5
x6
⟶
x9
x3
x6
x5
x7
⟶
x9
x3
x6
x6
x7
⟶
x9
x3
x6
x7
x6
⟶
x9
x3
x7
x5
x7
⟶
x9
x4
x6
x2
x7
⟶
x9
x4
x6
x4
x7
⟶
x9
x5
x6
x2
x7
⟶
x9
x5
x6
x3
x7
⟶
x9
x6
x6
x3
x7
⟶
x9
x7
x6
x2
x7
⟶
x9
x7
x6
x3
x7
⟶
x9
x7
x6
x6
x7
⟶
(
x4
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x6
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x7
⟶
∀ x10 : ο .
x10
)
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
not
(
x1
x12
)
⟶
x8
x10
x2
x11
x12
⟶
x8
x11
x12
x13
x14
⟶
x8
x13
x14
x15
x16
⟶
x8
x15
x16
x17
x18
⟶
x8
x17
x18
x19
x20
⟶
not
(
x9
x10
x2
x11
x12
)
⟶
not
(
x9
x10
x2
x13
x14
)
⟶
not
(
x9
x10
x2
x15
x16
)
⟶
not
(
x9
x10
x2
x17
x18
)
⟶
not
(
x9
x10
x2
x19
x20
)
⟶
not
(
x9
x11
x12
x13
x14
)
⟶
not
(
x9
x11
x12
x15
x16
)
⟶
not
(
x9
x11
x12
x17
x18
)
⟶
not
(
x9
x11
x12
x19
x20
)
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
x14
x17
x18
)
⟶
not
(
x9
x13
x14
x19
x20
)
⟶
not
(
x9
x15
x16
x17
x18
)
⟶
not
(
x9
x15
x16
x19
x20
)
⟶
not
(
x9
x17
x18
x19
x20
)
⟶
False
(proof)
Theorem
ab61b..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
not
(
x1
x8
)
⟶
∀ x9 :
ι → ο
.
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
not
(
x1
x6
)
⟶
not
(
x1
x7
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x4
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x2
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x2
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x3
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x3
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x4
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x4
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x5
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x5
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x6
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x6
x9
)
)
⟶
(
∀ x9 .
x0
x9
⟶
not
(
x8
x7
x9
x7
x9
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x10
x11
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x9
x10
x11
x12
x13
⟶
x9
x12
x13
x10
x11
)
⟶
(
∀ x10 x11 .
x0
x10
⟶
x0
x11
⟶
x9
x10
x11
x7
x7
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x6
x7
x10
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x6
x7
x7
x10
)
⟶
x9
x2
x2
x4
x6
⟶
x9
x2
x2
x5
x6
⟶
x9
x3
x2
x4
x6
⟶
x9
x3
x2
x5
x6
⟶
x9
x4
x2
x4
x6
⟶
x9
x4
x2
x5
x7
⟶
x9
x4
x7
x6
x2
⟶
x9
x5
x2
x5
x6
⟶
x9
x6
x2
x6
x7
⟶
x9
x2
x6
x4
x6
⟶
x9
x2
x6
x4
x7
⟶
x9
x2
x6
x5
x6
⟶
x9
x2
x6
x5
x7
⟶
x9
x2
x6
x7
x6
⟶
x9
x2
x7
x4
x7
⟶
x9
x2
x7
x5
x7
⟶
x9
x3
x6
x3
x7
⟶
x9
x3
x6
x5
x6
⟶
x9
x3
x6
x5
x7
⟶
x9
x3
x6
x6
x7
⟶
x9
x3
x6
x7
x6
⟶
x9
x3
x7
x5
x7
⟶
x9
x4
x6
x2
x7
⟶
x9
x4
x6
x4
x7
⟶
x9
x5
x6
x2
x7
⟶
x9
x5
x6
x3
x7
⟶
x9
x6
x6
x3
x7
⟶
x9
x7
x6
x2
x7
⟶
x9
x7
x6
x3
x7
⟶
x9
x7
x6
x6
x7
⟶
(
x4
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x6
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x7
⟶
∀ x10 : ο .
x10
)
⟶
(
∀ x10 :
ι → ο
.
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
∀ x11 .
x1
x11
⟶
x10
x11
)
⟶
(
∀ x10 .
x0
x10
⟶
∀ x11 .
x1
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x1
x13
)
⟶
x8
x10
x11
x12
x13
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
∀ x14 : ο .
(
x8
x10
x11
x12
x13
⟶
x14
)
⟶
(
x9
x10
x11
x12
x13
⟶
x14
)
⟶
(
x8
x12
x13
x10
x11
⟶
x14
)
⟶
x14
)
⟶
∀ x10 x11 x12 :
ι →
ι → ι
.
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x10
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x10
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x10
x13
(
x10
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x10
x13
x2
=
x3
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x11
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x11
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x11
x13
(
x11
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x11
x13
x2
=
x4
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x12
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x12
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x12
x13
(
x12
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x12
x13
x2
=
x5
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x10
x13
x14
)
x15
(
x10
x15
x16
)
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x11
x13
x14
)
x15
(
x11
x15
x16
)
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x12
x13
x14
)
x15
(
x12
x15
x16
)
)
)
⟶
∀ x13 .
x1
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
not
(
x1
x16
)
⟶
x8
x14
x13
x15
x16
⟶
x8
x15
x16
x17
x18
⟶
x8
x17
x18
x19
x20
⟶
x8
x19
x20
x21
x22
⟶
x8
x21
x22
x23
x24
⟶
not
(
x9
x14
x13
x15
x16
)
⟶
not
(
x9
x14
x13
x17
x18
)
⟶
not
(
x9
x14
x13
x19
x20
)
⟶
not
(
x9
x14
x13
x21
x22
)
⟶
not
(
x9
x14
x13
x23
x24
)
⟶
not
(
x9
x15
x16
x17
x18
)
⟶
not
(
x9
x15
x16
x19
x20
)
⟶
not
(
x9
x15
x16
x21
x22
)
⟶
not
(
x9
x15
x16
x23
x24
)
⟶
not
(
x9
x17
x18
x19
x20
)
⟶
not
(
x9
x17
x18
x21
x22
)
⟶
not
(
x9
x17
x18
x23
x24
)
⟶
not
(
x9
x19
x20
x21
x22
)
⟶
not
(
x9
x19
x20
x23
x24
)
⟶
not
(
x9
x21
x22
x23
x24
)
⟶
False
(proof)