Search for blocks/addresses/...
Proofgold Asset
asset id
ba833eec6b98108acf93a9916e38ef0140042dcb737e64b49def3860d5c09ae0
asset hash
b3e64e9908527cc154d4355064204d881f2f3a2ef1dbb993c97d39e2fbee3316
bday / block
35053
tx
b740c..
preasset
doc published by
PrNpY..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_SNoR
ordinal_SNoR
:
∀ x0 .
ordinal
x0
⟶
SNoR
x0
=
0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Theorem
dd834..
Conj_ordinal_SNoR__1__0
:
∀ x0 .
SNo
x0
⟶
SNoLev
x0
=
x0
⟶
SNoR
x0
=
0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
a558a..
Conj_SNoL_1__1__0
:
∀ x0 .
SNoLev
x0
∈
1
⟶
0
=
x0
⟶
x0
∈
1
(proof)
Param
SNoCutP
SNoCutP
:
ι
→
ι
→
ο
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Known
SNo_eta
SNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
Theorem
6cf6d..
Conj_SNo_eta__5__1
:
∀ x0 .
SNo
x0
⟶
SNoCutP
(
SNoL
x0
)
(
SNoR
x0
)
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
(proof)
Param
omega
omega
:
ι
Param
nat_p
nat_p
:
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
int
int
:
ι
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
164f1..
Conj_int_mul_SNo__3__2
:
∀ x0 x1 .
x0
∈
omega
⟶
SNo
x0
⟶
nat_p
x1
⟶
mul_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
∈
int
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Known
eps_ordsucc_half_add
eps_ordsucc_half_add
:
∀ x0 .
nat_p
x0
⟶
add_SNo
(
eps_
(
ordsucc
x0
)
)
(
eps_
(
ordsucc
x0
)
)
=
eps_
x0
Theorem
ca45c..
Conj_eps_ordsucc_half_add__11__1
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
⟶
add_SNo
(
eps_
(
ordsucc
x0
)
)
(
eps_
(
ordsucc
x0
)
)
=
eps_
x0
(proof)
Param
CSNo
CSNo
:
ι
→
ο
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Known
80a5b..
add_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
Theorem
a44cb..
Conj_add_CSNo_com__1__2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x1
x0
)
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Theorem
d43ff..
Conj_SNo_pos_eps_Le__1__3
:
∀ x0 x1 .
SNoLt
0
x1
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
x1
=
0
⟶
∀ x2 : ο .
x2
(proof)
Theorem
d43ff..
Conj_SNo_pos_eps_Le__1__3
:
∀ x0 x1 .
SNoLt
0
x1
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
x1
=
0
⟶
∀ x2 : ο .
x2
(proof)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Theorem
75d78..
Conj_minus_add_SNo_distr__3__2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
minus_SNo
x1
)
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
(proof)
Known
add_SNo_ordinal_ordinal
add_SNo_ordinal_ordinal
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
ordinal
(
add_SNo
x0
x1
)
Theorem
d2f6b..
Conj_add_SNo_ordinal_ordinal__4__2
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNo
x1
⟶
ordinal
(
add_SNo
x0
x1
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
SNoElts_
SNoElts_
:
ι
→
ι
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Definition
SNo_
SNo_
:=
λ x0 x1 .
and
(
x1
⊆
SNoElts_
x0
)
(
∀ x2 .
x2
∈
x0
⟶
exactly1of2
(
SetAdjoin
x2
(
Sing
1
)
∈
x1
)
(
x2
∈
x1
)
)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
SNo_SNo
SNo_SNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo_
x0
x1
⟶
SNo
x1
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Theorem
61455..
Conj_restr_SNo__1__2
:
∀ x0 x1 .
SNo
x0
⟶
x1
∈
SNoLev
x0
⟶
SNo_
x1
(
binintersect
x0
(
SNoElts_
x1
)
)
⟶
SNo
(
binintersect
x0
(
SNoElts_
x1
)
)
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
b53aa..
Conj_add_nat_add_SNo__1__1
:
∀ x0 .
ordinal
x0
⟶
(
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
)
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
(proof)
Theorem
df8dd..
Conj_add_SNo_ordinal_ordinal__3__3
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNo
x0
⟶
SNo
(
add_SNo
x0
x1
)
⟶
ordinal
(
add_SNo
x0
x1
)
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
b9e15..
not_ordinal_Sing2
:
not
(
ordinal
(
Sing
2
)
)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Sing2_notin_SingSing1
Sing2_notin_SingSing1
:
nIn
(
Sing
2
)
(
Sing
(
Sing
1
)
)
Theorem
34c67..
Conj_ctagged_eqE_Subq__1__1
:
∀ x0 x1 .
Sing
2
∈
x0
⟶
ordinal
x1
⟶
not
(
Sing
2
∈
SetAdjoin
x1
(
Sing
1
)
)
(proof)
Param
SNoS_
SNoS_
:
ι
→
ι
Theorem
70a69..
Conj_add_SNo_com__2__3
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
add_SNo
x3
x1
=
add_SNo
x1
x3
)
⟶
SNo
x2
⟶
x2
∈
SNoS_
(
SNoLev
x0
)
⟶
add_SNo
x2
x1
=
add_SNo
x1
x2
(proof)
Theorem
70a69..
Conj_add_SNo_com__2__3
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
add_SNo
x3
x1
=
add_SNo
x1
x3
)
⟶
SNo
x2
⟶
x2
∈
SNoS_
(
SNoLev
x0
)
⟶
add_SNo
x2
x1
=
add_SNo
x1
x2
(proof)
Known
SNo__eps_
SNo__eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo_
(
ordsucc
x0
)
(
eps_
x0
)
Theorem
dcf98..
Conj_SNo__eps___3__3
:
∀ x0 x1 x2 .
nat_p
x0
⟶
x1
∈
ordsucc
x0
⟶
nat_p
x2
⟶
nat_p
x1
⟶
exactly1of2
(
SetAdjoin
x1
(
Sing
1
)
∈
eps_
x0
)
(
x1
∈
eps_
x0
)
(proof)
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Self_In_Power
Self_In_Power
:
∀ x0 .
x0
∈
prim4
x0
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Empty_In_Power
Empty_In_Power
:
∀ x0 .
0
∈
prim4
x0
Theorem
d2732..
Conj_ZF_UPair_closed__1__1
:
∀ x0 x1 x2 .
x2
∈
UPair
x0
x1
⟶
If_i
(
x0
∈
0
)
x0
x1
∈
{
If_i
(
x0
∈
x3
)
x0
x1
|x3 ∈
prim4
(
prim4
x0
)
}
⟶
x2
∈
{
If_i
(
x0
∈
x3
)
x0
x1
|x3 ∈
prim4
(
prim4
x0
)
}
(proof)
Known
b63e9..
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
add_CSNo
x0
x1
)
x2
Theorem
31641..
Conj_add_CSNo_assoc__2__4
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
(
add_CSNo
x1
x2
)
⟶
CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
add_CSNo
x0
x1
)
x2
(proof)
Param
real
real
:
ι
Known
pos_real_recip_ex
pos_real_recip_ex
:
∀ x0 .
x0
∈
real
⟶
SNoLt
0
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
real
)
(
mul_SNo
x0
x2
=
1
)
⟶
x1
)
⟶
x1
Theorem
f4ed2..
Conj_pos_real_recip_ex__2__4
:
∀ x0 x1 .
x0
∈
real
⟶
SNoLt
0
x0
⟶
SNo
x0
⟶
x1
∈
omega
⟶
eps_
x1
∈
real
⟶
SNoLt
0
(
mul_SNo
(
eps_
x1
)
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
real
)
(
mul_SNo
x0
x3
=
1
)
⟶
x2
)
⟶
x2
(proof)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Theorem
3aec6..
Conj_SNo_approx_real_rep__1__1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoS_
omega
⟶
SNoLt
0
(
add_SNo
x1
(
minus_SNo
x0
)
)
⟶
not
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
SNoLe
(
add_SNo
x0
(
eps_
x3
)
)
x1
)
⟶
x2
)
⟶
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
(proof)
Theorem
5ece1..
Conj_add_SNo_prop1__4__2
:
∀ x0 x1 x2 .
SNo
x1
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x3
)
)
(
∀ x4 .
x4
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x4
x3
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x4
x3
)
)
)
(
∀ x4 .
x4
∈
SNoL
x3
⟶
SNoLt
(
add_SNo
x0
x4
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x3
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x4
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoL
x0
}
(
prim5
(
SNoL
x3
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoR
x0
}
(
prim5
(
SNoR
x3
)
(
add_SNo
x0
)
)
)
)
)
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x2
)
)
(
∀ x3 .
x3
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x3
x2
)
)
)
(
∀ x3 .
x3
∈
SNoL
x2
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x0
x3
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoL
x0
}
(
prim5
(
SNoL
x2
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoR
x0
}
(
prim5
(
SNoR
x2
)
(
add_SNo
x0
)
)
)
)
(proof)
Theorem
5ece1..
Conj_add_SNo_prop1__4__2
:
∀ x0 x1 x2 .
SNo
x1
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x3
)
)
(
∀ x4 .
x4
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x4
x3
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x4
x3
)
)
)
(
∀ x4 .
x4
∈
SNoL
x3
⟶
SNoLt
(
add_SNo
x0
x4
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x3
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x4
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoL
x0
}
(
prim5
(
SNoL
x3
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoR
x0
}
(
prim5
(
SNoR
x3
)
(
add_SNo
x0
)
)
)
)
)
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x2
)
)
(
∀ x3 .
x3
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x3
x2
)
)
)
(
∀ x3 .
x3
∈
SNoL
x2
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x0
x3
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoL
x0
}
(
prim5
(
SNoL
x2
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoR
x0
}
(
prim5
(
SNoR
x2
)
(
add_SNo
x0
)
)
)
)
(proof)
Param
TransSet
TransSet
:
ι
→
ο
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
ordinal_SNoLev_max_2
ordinal_SNoLev_max_2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
x0
⟶
SNoLe
x1
x0
Theorem
63f7a..
Conj_ordinal_SNoLev_max_2__5__0
:
∀ x0 x1 .
TransSet
x0
⟶
SNo
x1
⟶
SNo
x0
⟶
SNoLev
x0
=
x0
⟶
SNoLev
x1
=
x0
⟶
not
(
SNoLe
x1
x0
)
⟶
not
(
∀ x2 .
ordinal
x2
⟶
x2
∈
x0
⟶
x2
∈
x1
)
(proof)
Param
PNoLt
PNoLt
:
ι
→
(
ι
→
ο
) →
ι
→
(
ι
→
ο
) →
ο
Param
PNoEq_
PNoEq_
:
ι
→
(
ι
→
ο
) →
(
ι
→
ο
) →
ο
Known
PNoLt_trichotomy_or
PNoLt_trichotomy_or
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
PNoLt
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
PNoLt
x1
x3
x0
x2
)
Theorem
07010..
Conj_PNoLt_trichotomy_or__7__2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
TransSet
x1
⟶
ordinal
(
binintersect
x0
x1
)
⟶
or
(
or
(
PNoLt
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
PNoLt
x1
x3
x0
x2
)
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
a064b..
Conj_minus_SNo_invol__8__2
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
(
∀ x2 .
x2
∈
x0
⟶
minus_SNo
(
minus_SNo
x2
)
=
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
⟶
SNo
(
SNoCut
x0
x1
)
⟶
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
=
SNoCut
x0
x1
(proof)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
6cfb5..
Conj_add_SNo_minus_SNo_linv__9__5
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
add_SNo
(
minus_SNo
x3
)
x3
=
0
)
⟶
SNo
(
minus_SNo
x0
)
⟶
x1
=
add_SNo
(
minus_SNo
x0
)
x2
⟶
SNo
x2
⟶
SNoLt
x2
x0
⟶
SNo
(
minus_SNo
x2
)
⟶
SNoLt
x1
0
(proof)
Theorem
687fa..
Conj_minus_SNo_invol__8__0
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
minus_SNo
(
minus_SNo
x2
)
=
x2
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
minus_SNo
(
minus_SNo
x2
)
=
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
⟶
SNo
(
SNoCut
x0
x1
)
⟶
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
=
SNoCut
x0
x1
(proof)
Known
eps_ordsucc_Lt
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
(
eps_
(
ordsucc
x0
)
)
(
eps_
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
47fc9..
Conj_eps_ordsucc_half_add__7__0
:
∀ x0 x1 .
x0
∈
omega
⟶
SNo
(
eps_
(
ordsucc
x0
)
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
(
ordsucc
x0
)
⟶
SNoLt
x1
(
eps_
(
ordsucc
x0
)
)
⟶
SNoLe
x1
0
⟶
and
(
SNoLt
(
add_SNo
x1
(
eps_
(
ordsucc
x0
)
)
)
(
eps_
x0
)
)
(
SNoLt
(
add_SNo
(
eps_
(
ordsucc
x0
)
)
x1
)
(
eps_
x0
)
)
(proof)
Known
PNoLt_irref
PNoLt_irref
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
PNoLt
x0
x1
x0
x1
)
Known
PNoLt_tra
PNoLt_tra
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
PNoLt
x0
x3
x1
x4
⟶
PNoLt
x1
x4
x2
x5
⟶
PNoLt
x0
x3
x2
x5
Theorem
e1d83..
Conj_PNo_rel_imv_ex__7__4
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
ordinal
x0
⟶
PNoEq_
x0
x1
(
λ x4 .
or
(
x1
x4
)
(
x4
=
x0
)
)
⟶
x3
∈
x0
⟶
PNoEq_
x3
(
λ x4 .
or
(
x1
x4
)
(
x4
=
x0
)
)
x2
⟶
ordinal
x3
⟶
PNoLt
x3
x2
x0
x1
⟶
not
(
PNoLt
x0
x1
x3
x2
)
(proof)
Theorem
ec2d3..
Conj_PNo_rel_imv_ex__16__2
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
ordinal
x0
⟶
PNoEq_
x0
(
λ x4 .
and
(
x1
x4
)
(
x4
=
x0
⟶
∀ x5 : ο .
x5
)
)
x1
⟶
PNoEq_
x3
x2
(
λ x4 .
and
(
x1
x4
)
(
x4
=
x0
⟶
∀ x5 : ο .
x5
)
)
⟶
and
(
x1
x3
)
(
x3
=
x0
⟶
∀ x4 : ο .
x4
)
⟶
ordinal
x3
⟶
PNoLt
x0
x1
x3
x2
⟶
not
(
PNoLt
x3
x2
x0
x1
)
(proof)
Theorem
712f0..
Conj_mul_SNo_eq__19__1
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
SNo
x5
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
712f0..
Conj_mul_SNo_eq__19__1
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
SNo
x5
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
712f0..
Conj_mul_SNo_eq__19__1
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
SNo
x5
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
712f0..
Conj_mul_SNo_eq__19__1
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
SNo
x5
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
68a43..
Conj_mul_SNo_eq__19__2
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
x4
∈
SNoS_
(
SNoLev
x0
)
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
68a43..
Conj_mul_SNo_eq__19__2
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
x4
∈
SNoS_
(
SNoLev
x0
)
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
68a43..
Conj_mul_SNo_eq__19__2
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
x4
∈
SNoS_
(
SNoLev
x0
)
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
68a43..
Conj_mul_SNo_eq__19__2
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
SNo
x7
⟶
x2
x6
x7
=
x3
x6
x7
)
⟶
x4
∈
SNoS_
(
SNoLev
x0
)
⟶
x2
x4
x1
=
x3
x4
x1
⟶
x2
x0
x5
=
x3
x0
x5
⟶
x2
x4
x5
=
x3
x4
x5
⟶
add_SNo
(
x2
x4
x1
)
(
add_SNo
(
x2
x0
x5
)
(
minus_SNo
(
x2
x4
x5
)
)
)
=
add_SNo
(
x3
x4
x1
)
(
add_SNo
(
x3
x0
x5
)
(
minus_SNo
(
x3
x4
x5
)
)
)
(proof)
Theorem
59fb3..
Conj_mul_SNo_oneR__3__0
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
SNoL
x0
⟶
∀ x3 .
x3
∈
SNoL
1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x2
1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
1
)
(
mul_SNo
x2
x3
)
)
)
⟶
0
∈
SNoL
1
⟶
x1
∈
SNoL
x0
⟶
SNo
x1
⟶
add_SNo
(
mul_SNo
x1
1
)
(
mul_SNo
x0
0
)
=
x1
⟶
add_SNo
(
mul_SNo
x0
1
)
(
mul_SNo
x1
0
)
=
mul_SNo
x0
1
⟶
SNoLt
x1
(
mul_SNo
x0
1
)
(proof)
Theorem
e3ee4..
Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNo
x0
⟶
not
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
nIn
x0
(
SNoS_
omega
)
⟶
not
(
∀ x1 .
nat_p
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
(proof)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
add_SNo_ordinal_SL
add_SNo_ordinal_SL
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
add_SNo
(
ordsucc
x0
)
x1
=
ordsucc
(
add_SNo
x0
x1
)
Theorem
8c732..
Conj_add_SNo_ordinal_SL__11__9
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
add_SNo
(
ordsucc
x0
)
x2
=
ordsucc
(
add_SNo
x0
x2
)
)
⟶
SNo
x0
⟶
SNo
x1
⟶
ordinal
(
add_SNo
x0
x1
)
⟶
ordinal
(
ordsucc
x0
)
⟶
SNo
(
ordsucc
x0
)
⟶
ordinal
(
add_SNo
(
ordsucc
x0
)
x1
)
⟶
ordsucc
(
add_SNo
x0
x1
)
∈
add_SNo
(
ordsucc
x0
)
x1
⟶
not
(
ordinal
(
ordsucc
(
add_SNo
x0
x1
)
)
)
(proof)
Known
minus_SNoCut_eq
minus_SNoCut_eq
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
minus_SNo
(
SNoCut
x0
x1
)
=
SNoCut
(
prim5
x1
minus_SNo
)
(
prim5
x0
minus_SNo
)
Theorem
9d1d7..
Conj_minus_SNoCut_eq_lem__11__3
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x4 x5 .
SNoCutP
x4
x5
⟶
x3
=
SNoCut
x4
x5
⟶
minus_SNo
x3
=
SNoCut
(
prim5
x5
minus_SNo
)
(
prim5
x4
minus_SNo
)
)
⟶
SNoCutP
x1
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
SNo
x3
)
⟶
x0
=
SNoCut
x1
x2
⟶
SNo
(
SNoCut
x1
x2
)
⟶
minus_SNo
x0
=
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
(proof)
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Theorem
e0a4a..
Conj_minus_SNo_prop1__2__2
:
∀ x0 x1 .
SNo
x0
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x0
)
⟶
and
(
and
(
and
(
SNo
(
minus_SNo
x2
)
)
(
∀ x3 .
x3
∈
SNoL
x2
⟶
SNoLt
(
minus_SNo
x2
)
(
minus_SNo
x3
)
)
)
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
minus_SNo
x3
)
(
minus_SNo
x2
)
)
)
(
SNoCutP
(
prim5
(
SNoR
x2
)
minus_SNo
)
(
prim5
(
SNoL
x2
)
minus_SNo
)
)
)
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
and
(
and
(
SNo
(
minus_SNo
x1
)
)
(
∀ x2 .
x2
∈
SNoL
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x2
)
)
)
(
∀ x2 .
x2
∈
SNoR
x1
⟶
SNoLt
(
minus_SNo
x2
)
(
minus_SNo
x1
)
)
(proof)
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNo_SNoCut
SNoCutP_SNo_SNoCut
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
SNo
(
SNoCut
x0
x1
)
Theorem
59be3..
Conj_minus_SNo_invol__5__6
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
(
∀ x2 .
x2
∈
x0
⟶
minus_SNo
(
minus_SNo
x2
)
=
x2
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
minus_SNo
(
minus_SNo
x2
)
=
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
⟶
SNo
(
SNoCut
x0
x1
)
⟶
SNo
(
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
(
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
)
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
(
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
)
)
⟶
minus_SNo
(
minus_SNo
(
SNoCut
x0
x1
)
)
=
SNoCut
x0
x1
(proof)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Theorem
5101e..
Conj_mul_SNo_SNoL_interpolate__5__9
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
(
∀ x6 .
x6
∈
SNoL
x0
⟶
∀ x7 .
x7
∈
SNoL
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x6
x1
)
(
mul_SNo
x0
x7
)
)
(
add_SNo
x2
(
mul_SNo
x6
x7
)
)
)
⟶
SNo
x3
⟶
SNoLt
x2
x3
⟶
x4
∈
SNoL
x0
⟶
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
x3
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
SNo
x5
⟶
SNo
(
mul_SNo
x4
x5
)
⟶
SNoLt
(
add_SNo
x3
(
mul_SNo
x4
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
SNoLt
(
mul_SNo
x0
x1
)
x3
(proof)
Theorem
d0d3d..
Conj_minus_SNo_prop1__5__9
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
and
(
and
(
and
(
SNo
(
minus_SNo
x3
)
)
(
∀ x4 .
x4
∈
SNoL
x3
⟶
SNoLt
(
minus_SNo
x3
)
(
minus_SNo
x4
)
)
)
(
∀ x4 .
x4
∈
SNoR
x3
⟶
SNoLt
(
minus_SNo
x4
)
(
minus_SNo
x3
)
)
)
(
SNoCutP
(
prim5
(
SNoR
x3
)
minus_SNo
)
(
prim5
(
SNoL
x3
)
minus_SNo
)
)
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
SNo
x2
⟶
SNoLt
x2
x0
⟶
SNo
(
minus_SNo
x2
)
⟶
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
minus_SNo
x3
)
(
minus_SNo
x2
)
)
⟶
(
∀ x3 .
x3
∈
SNoL
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x3
)
)
⟶
SNoLt
x2
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x2
)
(proof)
Theorem
ec8fd..
Conj_minus_SNo_prop1__5__7
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
and
(
and
(
and
(
SNo
(
minus_SNo
x3
)
)
(
∀ x4 .
x4
∈
SNoL
x3
⟶
SNoLt
(
minus_SNo
x3
)
(
minus_SNo
x4
)
)
)
(
∀ x4 .
x4
∈
SNoR
x3
⟶
SNoLt
(
minus_SNo
x4
)
(
minus_SNo
x3
)
)
)
(
SNoCutP
(
prim5
(
SNoR
x3
)
minus_SNo
)
(
prim5
(
SNoL
x3
)
minus_SNo
)
)
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
SNo
x2
⟶
SNoLt
x2
x0
⟶
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
minus_SNo
x3
)
(
minus_SNo
x2
)
)
⟶
SNo
(
minus_SNo
x1
)
⟶
(
∀ x3 .
x3
∈
SNoL
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x3
)
)
⟶
SNoLt
x2
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x2
)
(proof)
Param
diadic_rational_p
diadic_rational_p
:
ι
→
ο
Param
SNo_min_of
SNo_min_of
:
ι
→
ι
→
ο
Known
SNoS_omega_diadic_rational_p_lem
SNoS_omega_diadic_rational_p_lem
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
=
x0
⟶
diadic_rational_p
x1
Theorem
ff211..
Conj_SNoS_omega_diadic_rational_p_lem__11__5
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
SNo
x5
⟶
SNoLev
x5
=
x4
⟶
diadic_rational_p
x5
)
⟶
SNo
x1
⟶
SNoLev
x1
=
x0
⟶
not
(
diadic_rational_p
x1
)
⟶
SNo
x2
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
SNoLt
x2
x1
⟶
SNo_min_of
(
SNoR
x1
)
x3
⟶
SNo
x3
⟶
SNoLev
x3
∈
SNoLev
x1
⟶
SNoLt
x1
x3
⟶
SNo
(
add_SNo
x1
x1
)
⟶
SNo
(
add_SNo
x2
x3
)
⟶
not
(
diadic_rational_p
x2
)
(proof)
Param
abs_SNo
abs_SNo
:
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Theorem
694cf..
Conj_SNo_approx_real__10__10
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
⟶
x2
∈
SNoS_
omega
⟶
(
∀ x4 .
x4
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x4
)
)
⟶
SNo
x2
⟶
SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
⟶
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x4
(
minus_SNo
(
ap
x1
(
ordsucc
x3
)
)
)
)
)
(
eps_
x5
)
)
⟶
x4
=
ap
x1
(
ordsucc
x3
)
)
⟶
SNo
(
ap
x1
(
ordsucc
x3
)
)
⟶
SNoLt
(
ap
x1
(
ordsucc
x3
)
)
x2
⟶
SNoLt
0
(
add_SNo
x2
(
minus_SNo
(
ap
x1
(
ordsucc
x3
)
)
)
)
⟶
SNoLt
x0
(
ap
x1
(
ordsucc
x3
)
)
⟶
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
=
add_SNo
x2
(
minus_SNo
x0
)
⟶
x2
=
ap
x1
(
ordsucc
x3
)
⟶
SNoLt
x2
(
ap
x1
x3
)
(proof)
Param
SNo_max_of
SNo_max_of
:
ι
→
ι
→
ο
Theorem
9e6ca..
Conj_SNoS_omega_diadic_rational_p_lem__10__12
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
SNo
x5
⟶
SNoLev
x5
=
x4
⟶
diadic_rational_p
x5
)
⟶
SNo
x1
⟶
SNoLev
x1
=
x0
⟶
not
(
diadic_rational_p
x1
)
⟶
SNo_max_of
(
SNoL
x1
)
x2
⟶
SNo
x2
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
SNoLt
x2
x1
⟶
SNo_min_of
(
SNoR
x1
)
x3
⟶
SNo
x3
⟶
SNoLev
x3
∈
SNoLev
x1
⟶
SNo
(
add_SNo
x1
x1
)
⟶
SNo
(
add_SNo
x2
x3
)
⟶
diadic_rational_p
x2
⟶
not
(
diadic_rational_p
x3
)
(proof)
Theorem
2167e..
Conj_SNoS_omega_diadic_rational_p_lem__10__10
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
SNo
x5
⟶
SNoLev
x5
=
x4
⟶
diadic_rational_p
x5
)
⟶
SNo
x1
⟶
SNoLev
x1
=
x0
⟶
not
(
diadic_rational_p
x1
)
⟶
SNo_max_of
(
SNoL
x1
)
x2
⟶
SNo
x2
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
SNoLt
x2
x1
⟶
SNo_min_of
(
SNoR
x1
)
x3
⟶
SNoLev
x3
∈
SNoLev
x1
⟶
SNoLt
x1
x3
⟶
SNo
(
add_SNo
x1
x1
)
⟶
SNo
(
add_SNo
x2
x3
)
⟶
diadic_rational_p
x2
⟶
not
(
diadic_rational_p
x3
)
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Theorem
d22e6..
Conj_real_add_SNo__6__10
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x5 .
x5
∈
SNoS_
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x5
(
minus_SNo
x1
)
)
)
(
eps_
x6
)
)
⟶
x5
=
x1
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
(
minus_SNo
(
eps_
x5
)
)
)
(
add_SNo
x0
x1
)
)
⟶
SNo
x4
⟶
SNoLt
x1
x4
⟶
x4
∈
SNoS_
omega
⟶
not
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
omega
)
(
SNoLe
(
ap
(
lam
omega
(
λ x7 .
add_SNo
(
ap
x2
(
ordsucc
x7
)
)
(
ap
x3
(
ordsucc
x7
)
)
)
)
x6
)
(
add_SNo
x0
x4
)
)
⟶
x5
)
⟶
x5
)
⟶
x4
=
x1
⟶
∀ x5 : ο .
x5
(proof)
Theorem
fe17b..
Conj_real_add_SNo__18__2
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
(
∀ x5 .
x5
∈
SNoS_
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x5
(
minus_SNo
x0
)
)
)
(
eps_
x6
)
)
⟶
x5
=
x0
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
(
eps_
x5
)
)
)
⟶
SNo
x4
⟶
SNoLt
x4
x0
⟶
x4
∈
SNoS_
omega
⟶
not
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
omega
)
(
SNoLe
(
add_SNo
x4
x1
)
(
ap
(
lam
omega
(
λ x7 .
add_SNo
(
ap
x2
(
ordsucc
x7
)
)
(
ap
x3
(
ordsucc
x7
)
)
)
)
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
SNoLt
0
(
add_SNo
x0
(
minus_SNo
x4
)
)
⟶
x4
=
x0
⟶
∀ x5 : ο .
x5
(proof)
Theorem
06412..
Conj_real_add_SNo__6__6
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x5 .
x5
∈
SNoS_
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x5
(
minus_SNo
x1
)
)
)
(
eps_
x6
)
)
⟶
x5
=
x1
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
(
minus_SNo
(
eps_
x5
)
)
)
(
add_SNo
x0
x1
)
)
⟶
SNoLt
x1
x4
⟶
x4
∈
SNoS_
omega
⟶
not
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
omega
)
(
SNoLe
(
ap
(
lam
omega
(
λ x7 .
add_SNo
(
ap
x2
(
ordsucc
x7
)
)
(
ap
x3
(
ordsucc
x7
)
)
)
)
x6
)
(
add_SNo
x0
x4
)
)
⟶
x5
)
⟶
x5
)
⟶
SNoLt
0
(
add_SNo
x4
(
minus_SNo
x1
)
)
⟶
x4
=
x1
⟶
∀ x5 : ο .
x5
(proof)
Theorem
35556..
Conj_real_add_SNo__18__6
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x5 .
x5
∈
SNoS_
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x5
(
minus_SNo
x0
)
)
)
(
eps_
x6
)
)
⟶
x5
=
x0
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
(
eps_
x5
)
)
)
⟶
SNoLt
x4
x0
⟶
x4
∈
SNoS_
omega
⟶
not
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
omega
)
(
SNoLe
(
add_SNo
x4
x1
)
(
ap
(
lam
omega
(
λ x7 .
add_SNo
(
ap
x2
(
ordsucc
x7
)
)
(
ap
x3
(
ordsucc
x7
)
)
)
)
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
SNoLt
0
(
add_SNo
x0
(
minus_SNo
x4
)
)
⟶
x4
=
x0
⟶
∀ x5 : ο .
x5
(proof)
Known
add_SNo_minus_Lt2
add_SNo_minus_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
Theorem
1dbb1..
Conj_real_add_SNo__10__7
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x5 .
x5
∈
SNoS_
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x5
(
minus_SNo
x0
)
)
)
(
eps_
x6
)
)
⟶
x5
=
x0
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
)
⟶
(
∀ x5 .
x5
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
(
lam
omega
(
λ x6 .
add_SNo
(
ap
x2
(
ordsucc
x6
)
)
(
ap
x3
(
ordsucc
x6
)
)
)
)
x5
)
(
minus_SNo
(
eps_
x5
)
)
)
(
add_SNo
x0
x1
)
)
⟶
SNo
x4
⟶
x4
∈
SNoS_
omega
⟶
not
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
omega
)
(
SNoLe
(
ap
(
lam
omega
(
λ x7 .
add_SNo
(
ap
x2
(
ordsucc
x7
)
)
(
ap
x3
(
ordsucc
x7
)
)
)
)
x6
)
(
add_SNo
x4
x1
)
)
⟶
x5
)
⟶
x5
)
⟶
SNoLt
0
(
add_SNo
x4
(
minus_SNo
x0
)
)
⟶
x4
=
x0
⟶
∀ x5 : ο .
x5
(proof)
Known
SNo_abs_SNo
SNo_abs_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
abs_SNo
x0
)
Theorem
09057..
Conj_real_mul_SNo_pos__14__9
:
∀ x0 x1 x2 x3 x4 x5 x6 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
⟶
SNo
(
minus_SNo
(
mul_SNo
x0
x1
)
)
⟶
SNo
x2
⟶
SNoLt
(
mul_SNo
x0
x1
)
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNoLe
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x0
x4
)
)
(
add_SNo
x2
(
mul_SNo
x3
x4
)
)
⟶
SNo
(
mul_SNo
x0
x4
)
⟶
SNo
(
mul_SNo
x3
x4
)
⟶
SNo
(
minus_SNo
(
mul_SNo
x3
x4
)
)
⟶
SNo
(
add_SNo
x0
(
minus_SNo
x3
)
)
⟶
SNo
(
add_SNo
x4
(
minus_SNo
x1
)
)
⟶
x5
∈
omega
⟶
SNoLe
(
eps_
x5
)
(
add_SNo
x0
(
minus_SNo
x3
)
)
⟶
x6
∈
omega
⟶
SNoLe
(
eps_
x6
)
(
add_SNo
x4
(
minus_SNo
x1
)
)
⟶
SNo
(
eps_
x5
)
⟶
SNo
(
eps_
x6
)
⟶
SNo
(
eps_
(
add_SNo
x5
x6
)
)
⟶
SNo
(
mul_SNo
(
eps_
x5
)
(
eps_
x6
)
)
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
(
mul_SNo
x0
x1
)
)
)
)
(
eps_
(
add_SNo
x5
x6
)
)
⟶
not
(
SNoLe
(
eps_
(
add_SNo
x5
x6
)
)
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
(
mul_SNo
x0
x1
)
)
)
)
)
(proof)
Known
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
Known
real_I
real_I
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
x0
=
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
x0
=
minus_SNo
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
x0
∈
real
Known
SNo_omega
SNo_omega
:
SNo
omega
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
nat_0
nat_0
:
nat_p
0
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Theorem
e4ae8..
Conj_real_mul_SNo_pos__135__10
:
∀ x0 x1 .
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
not
(
mul_SNo
x0
x1
∈
real
)
⟶
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
omega
⟶
SNoLt
x1
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x1
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x1
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x0
⟶
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x1
⟶
SNoLt
x1
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
not
(
SNo
(
mul_SNo
x0
x1
)
)
(proof)
Theorem
da648..
Conj_minus_SNoCut_eq_lem__8__3
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x4 x5 .
SNoCutP
x4
x5
⟶
x3
=
SNoCut
x4
x5
⟶
minus_SNo
x3
=
SNoCut
(
prim5
x5
minus_SNo
)
(
prim5
x4
minus_SNo
)
)
⟶
SNoCutP
x1
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
SNo
x3
)
⟶
x0
=
SNoCut
x1
x2
⟶
SNoCutP
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
⟶
SNo
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
prim5
x2
minus_SNo
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
prim5
x1
minus_SNo
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
)
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
x3
)
)
⟶
(
∀ x3 .
x3
∈
prim5
x2
minus_SNo
⟶
SNoLt
x3
(
minus_SNo
x0
)
)
⟶
(
∀ x3 .
x3
∈
prim5
x1
minus_SNo
⟶
SNoLt
(
minus_SNo
x0
)
x3
)
⟶
minus_SNo
x0
=
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
(proof)
Theorem
9e3c5..
Conj_real_mul_SNo_pos__132__4
:
∀ x0 x1 .
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
not
(
mul_SNo
x0
x1
∈
real
)
⟶
SNo
x0
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
omega
⟶
x1
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x1
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x1
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x1
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x0
⟶
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x1
⟶
SNoLt
x1
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
SNo
(
mul_SNo
x0
x1
)
⟶
SNo
(
minus_SNo
(
mul_SNo
x0
x1
)
)
⟶
nIn
(
SNoLev
(
mul_SNo
x0
x1
)
)
omega
⟶
not
(
∀ x2 .
SNo
x2
⟶
SNoLev
x2
∈
omega
⟶
SNoLev
x2
∈
SNoLev
(
mul_SNo
x0
x1
)
)
(proof)
Param
setexp
setexp
:
ι
→
ι
→
ι
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Theorem
aa8d2..
Conj_real_add_SNo__45__16
:
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
real
⟶
x1
∈
real
⟶
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
x3
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x2
x6
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x2
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x2
x7
)
(
ap
x2
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x3
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
ap
x3
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x3
x6
)
(
ap
x3
x7
)
)
⟶
x4
∈
setexp
(
SNoS_
omega
)
omega
⟶
x5
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x4
x6
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
add_SNo
(
ap
x4
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x4
x7
)
(
ap
x4
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x5
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x5
x6
)
(
ap
x5
x7
)
)
⟶
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x0
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x0
)
⟶
add_SNo
x0
x1
∈
real
(proof)
Theorem
5103b..
Conj_real_add_SNo__45__20
:
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
real
⟶
x1
∈
real
⟶
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
x3
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x2
x6
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x2
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x2
x7
)
(
ap
x2
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x3
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
ap
x3
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x3
x6
)
(
ap
x3
x7
)
)
⟶
x4
∈
setexp
(
SNoS_
omega
)
omega
⟶
x5
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x4
x6
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
add_SNo
(
ap
x4
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x4
x7
)
(
ap
x4
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x5
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
ap
x5
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x5
x6
)
(
ap
x5
x7
)
)
⟶
SNo
x0
⟶
SNo
x1
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x0
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x0
)
⟶
add_SNo
x0
x1
∈
real
(proof)
Theorem
7b761..
Conj_mul_SNo_com__1__0
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x1
⟶
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
mul_SNo
x6
x1
=
mul_SNo
x1
x6
)
⟶
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x1
)
⟶
mul_SNo
x0
x6
=
mul_SNo
x6
x0
)
⟶
(
∀ x6 .
x6
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x7 .
x7
∈
SNoS_
(
SNoLev
x1
)
⟶
mul_SNo
x6
x7
=
mul_SNo
x7
x6
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
∀ x7 : ο .
(
∀ x8 .
x8
∈
SNoL
x0
⟶
∀ x9 .
x9
∈
SNoR
x1
⟶
x6
=
add_SNo
(
mul_SNo
x8
x1
)
(
add_SNo
(
mul_SNo
x0
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
⟶
x7
)
⟶
(
∀ x8 .
x8
∈
SNoR
x0
⟶
∀ x9 .
x9
∈
SNoL
x1
⟶
x6
=
add_SNo
(
mul_SNo
x8
x1
)
(
add_SNo
(
mul_SNo
x0
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
SNoL
x0
⟶
∀ x7 .
x7
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x6
x1
)
(
add_SNo
(
mul_SNo
x0
x7
)
(
minus_SNo
(
mul_SNo
x6
x7
)
)
)
∈
x3
)
⟶
(
∀ x6 .
x6
∈
SNoR
x0
⟶
∀ x7 .
x7
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x6
x1
)
(
add_SNo
(
mul_SNo
x0
x7
)
(
minus_SNo
(
mul_SNo
x6
x7
)
)
)
∈
x3
)
⟶
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 : ο .
(
∀ x8 .
x8
∈
SNoL
x1
⟶
∀ x9 .
x9
∈
SNoR
x0
⟶
x6
=
add_SNo
(
mul_SNo
x8
x0
)
(
add_SNo
(
mul_SNo
x1
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
⟶
x7
)
⟶
(
∀ x8 .
x8
∈
SNoR
x1
⟶
∀ x9 .
x9
∈
SNoL
x0
⟶
x6
=
add_SNo
(
mul_SNo
x8
x0
)
(
add_SNo
(
mul_SNo
x1
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
SNoL
x1
⟶
∀ x7 .
x7
∈
SNoR
x0
⟶
add_SNo
(
mul_SNo
x6
x0
)
(
add_SNo
(
mul_SNo
x1
x7
)
(
minus_SNo
(
mul_SNo
x6
x7
)
)
)
∈
x5
)
⟶
(
∀ x6 .
x6
∈
SNoR
x1
⟶
∀ x7 .
x7
∈
SNoL
x0
⟶
add_SNo
(
mul_SNo
x6
x0
)
(
add_SNo
(
mul_SNo
x1
x7
)
(
minus_SNo
(
mul_SNo
x6
x7
)
)
)
∈
x5
)
⟶
x2
=
x4
⟶
x3
=
x5
⟶
SNoCut
x2
x3
=
SNoCut
x4
x5
(proof)
Theorem
7312b..
Conj_real_add_SNo__44__17
:
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
real
⟶
x1
∈
real
⟶
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
x3
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x2
x6
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x2
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x2
x7
)
(
ap
x2
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x3
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x0
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x0
(
ap
x3
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x3
x6
)
(
ap
x3
x7
)
)
⟶
x4
∈
setexp
(
SNoS_
omega
)
omega
⟶
x5
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
ap
x4
x6
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
add_SNo
(
ap
x4
x6
)
(
eps_
x6
)
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
x7
∈
x6
⟶
SNoLt
(
ap
x4
x7
)
(
ap
x4
x6
)
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x5
x6
)
(
minus_SNo
(
eps_
x6
)
)
)
x1
)
⟶
(
∀ x6 .
x6
∈
omega
⟶
SNoLt
x1
(
ap
x5
x6
)
)
⟶
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x0
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x0
)
⟶
(
∀ x6 .
x6
∈
SNoS_
omega
⟶
(
∀ x7 .
x7
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x6
(
minus_SNo
x1
)
)
)
(
eps_
x7
)
)
⟶
x6
=
x1
)
⟶
add_SNo
x0
x1
∈
real
(proof)