Search for blocks/addresses/...
Proofgold Asset
asset id
bc44a113b76935a7732a9d7915aefee79ae74d71003403348de5ad39c92757ac
asset hash
988a43a0e06731770052b1295ccdbd987f7eae610fde1412716f7e8df0189b39
bday / block
35144
tx
3eb66..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
585e5..
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι → ι
.
∀ x6 x7 :
ι → ο
.
∀ x8 .
∀ x9 :
ι → ο
.
∀ x10 x11 x12 x13 .
∀ x14 :
ι → ο
.
∀ x15 x16 :
ι → ι
.
∀ x17 :
ι → ο
.
∀ x18 x19 .
∀ x20 :
ι → ι
.
∀ x21 x22 x23 x24 .
∀ x25 :
ι → ο
.
(
∀ x26 x27 .
x25
x27
⟶
(
x27
=
x26
⟶
False
)
⟶
x25
x26
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x26
x27
⟶
x25
x27
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
(
x26
=
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x1
x26
x27
⟶
(
x25
x27
⟶
False
)
⟶
(
x0
x26
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
x26
⟶
(
x1
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x2
x28
⟶
x6
x28
⟶
x2
x27
⟶
x6
x27
⟶
x0
x26
(
x5
(
x3
x27
x28
)
)
⟶
(
x4
(
x3
x27
x28
)
x26
=
x4
x28
(
x4
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x2
x28
⟶
x6
x28
⟶
x2
x27
⟶
x6
x27
⟶
x0
x26
(
x5
x27
)
⟶
x0
(
x4
x27
x26
)
(
x5
x28
)
⟶
(
x0
x26
(
x5
(
x3
x27
x28
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x2
x28
⟶
x6
x28
⟶
x2
x27
⟶
x6
x27
⟶
x0
x26
(
x5
(
x3
x27
x28
)
)
⟶
(
x0
(
x4
x27
x26
)
(
x5
x28
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x2
x28
⟶
x6
x28
⟶
x2
x27
⟶
x6
x27
⟶
x0
x26
(
x5
(
x3
x27
x28
)
)
⟶
(
x0
x26
(
x5
x27
)
⟶
False
)
⟶
False
)
⟶
(
x7
x8
⟶
False
)
⟶
(
x25
x23
⟶
False
)
⟶
(
(
x9
x10
⟶
False
)
⟶
False
)
⟶
(
(
x2
x10
⟶
False
)
⟶
False
)
⟶
(
(
x7
x11
⟶
False
)
⟶
False
)
⟶
(
x25
x11
⟶
False
)
⟶
(
(
x25
x12
⟶
False
)
⟶
False
)
⟶
(
(
x2
x22
⟶
False
)
⟶
False
)
⟶
(
x25
x22
⟶
False
)
⟶
(
(
x6
x21
⟶
False
)
⟶
False
)
⟶
(
(
x2
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
(
x25
x26
⟶
False
)
⟶
x2
x26
⟶
x25
(
x5
x26
)
⟶
False
)
⟶
(
∀ x26 x27 .
x2
x27
⟶
x6
x27
⟶
x2
x26
⟶
x6
x26
⟶
(
x6
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x2
x27
⟶
x6
x27
⟶
x2
x26
⟶
x6
x26
⟶
(
x2
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x7
x26
⟶
x2
x26
⟶
(
x7
(
x5
x26
)
⟶
False
)
⟶
False
)
⟶
(
(
x25
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x2
x27
⟶
x2
x26
⟶
x9
x26
⟶
(
x9
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x2
x27
⟶
x2
x26
⟶
x9
x26
⟶
(
x2
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x25
x27
⟶
x2
x26
⟶
(
x2
(
x3
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x25
x27
⟶
x2
x26
⟶
(
x25
(
x3
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x25
x27
⟶
x2
x26
⟶
(
x2
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x25
x27
⟶
x2
x26
⟶
(
x25
(
x3
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
(
x25
(
x5
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
(
x1
(
x20
x26
)
x26
⟶
False
)
⟶
False
)
⟶
(
(
x25
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x2
(
x3
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x2
x26
⟶
x6
x26
⟶
x15
x26
=
x16
x26
⟶
(
x14
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x2
x26
⟶
x6
x26
⟶
(
x4
x26
(
x15
x26
)
=
x4
x26
(
x16
x26
)
⟶
False
)
⟶
(
x14
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x2
x26
⟶
x6
x26
⟶
(
x0
(
x16
x26
)
(
x5
x26
)
⟶
False
)
⟶
(
x14
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x2
x26
⟶
x6
x26
⟶
(
x0
(
x15
x26
)
(
x5
x26
)
⟶
False
)
⟶
(
x14
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x2
x28
⟶
x6
x28
⟶
x14
x28
⟶
x0
x26
(
x5
x28
)
⟶
x0
x27
(
x5
x28
)
⟶
x4
x28
x26
=
x4
x28
x27
⟶
(
x26
=
x27
⟶
False
)
⟶
False
)
⟶
(
(
x24
=
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
x2
x26
⟶
(
x9
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
x2
x26
⟶
(
x2
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
x2
x26
⟶
(
x17
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
x2
x26
⟶
(
x2
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
(
x7
x26
⟶
False
)
⟶
x25
x26
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
(
x7
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
(
x2
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
x25
x26
⟶
(
x6
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x26
x27
⟶
x0
x27
x26
⟶
False
)
⟶
(
x14
(
x3
x18
x19
)
⟶
False
)
⟶
(
(
x14
x19
⟶
False
)
⟶
False
)
⟶
(
(
x14
x18
⟶
False
)
⟶
False
)
⟶
(
(
x6
x19
⟶
False
)
⟶
False
)
⟶
(
(
x2
x19
⟶
False
)
⟶
False
)
⟶
(
(
x6
x18
⟶
False
)
⟶
False
)
⟶
(
(
x2
x18
⟶
False
)
⟶
False
)
⟶
False
(proof)