Search for blocks/addresses/...
Proofgold Asset
asset id
1811fe9ae739857caa818f047afcfd837fbe1ae025e17e408521eeeab22af107
asset hash
bda0927d2ef712dd8b073cfa787d990d47216e038d008b787062d1ba6fc7a5fb
bday / block
2774
tx
e27bb..
preasset
doc published by
PrGxv..
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Param
aae7a..
:
ι
→
ι
→
ι
Definition
0fc90..
:=
λ x0 .
λ x1 :
ι → ι
.
a842e..
x0
(
λ x2 .
94f9e..
(
x1
x2
)
(
aae7a..
x2
)
)
Known
2236b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
x0
⟶
prim1
x3
(
x1
x2
)
⟶
prim1
x3
(
a842e..
x0
x1
)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
f5701..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
(
x1
x2
)
⟶
prim1
(
aae7a..
x2
x3
)
(
0fc90..
x0
x1
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
e76d4..
:
ι
→
ι
Param
22ca9..
:
ι
→
ι
Known
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
5dd0a..
:
∀ x0 x1 .
e76d4..
(
aae7a..
x0
x1
)
=
x0
Known
40190..
:
∀ x0 x1 .
22ca9..
(
aae7a..
x0
x1
)
=
x1
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
042d7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
a842e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
prim1
x2
(
x1
x4
)
)
⟶
x3
)
⟶
x3
Theorem
016fc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
and
(
and
(
aae7a..
(
e76d4..
x2
)
(
22ca9..
x2
)
=
x2
)
(
prim1
(
e76d4..
x2
)
x0
)
)
(
prim1
(
22ca9..
x2
)
(
x1
(
e76d4..
x2
)
)
)
(proof)
Known
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
cdaf8..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
aae7a..
(
e76d4..
x2
)
(
22ca9..
x2
)
=
x2
(proof)
Theorem
a268e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
e76d4..
x2
)
x0
(proof)
Theorem
cbf3e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
22ca9..
x2
)
(
x1
(
e76d4..
x2
)
)
(proof)
Theorem
5d5fc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
(
aae7a..
x2
x3
)
(
0fc90..
x0
x1
)
⟶
prim1
x2
x0
(proof)
Theorem
e2bb7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
(
aae7a..
x2
x3
)
(
0fc90..
x0
x1
)
⟶
prim1
x3
(
x1
x2
)
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
7d8a1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
aae7a..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
9b331..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
prim1
x2
(
0fc90..
x0
x1
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
aae7a..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Theorem
690be..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
Subq
(
x2
x4
)
(
x3
x4
)
)
⟶
Subq
(
0fc90..
x0
x2
)
(
0fc90..
x1
x3
)
(proof)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
d3673..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 :
ι → ι
.
Subq
(
0fc90..
x0
x2
)
(
0fc90..
x1
x2
)
(proof)
Theorem
f42b8..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
Subq
(
x1
x3
)
(
x2
x3
)
)
⟶
Subq
(
0fc90..
x0
x1
)
(
0fc90..
x0
x2
)
(proof)
Param
e5b72..
:
ι
→
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Known
7144c..
:
aae7a..
4a7ef..
4a7ef..
=
4a7ef..
Param
91630..
:
ι
→
ι
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
30652..
:
Subq
(
4ae4a..
4a7ef..
)
(
91630..
4a7ef..
)
Known
b21da..
:
∀ x0 x1 .
prim1
x1
(
e5b72..
x0
)
⟶
Subq
x1
x0
Theorem
2ad56..
:
∀ x0 .
prim1
x0
(
e5b72..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
e5b72..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
(
0fc90..
x0
x1
)
(
e5b72..
(
4ae4a..
4a7ef..
)
)
(proof)
Definition
ac767..
:=
λ x0 x1 .
0fc90..
x0
(
λ x2 .
x1
)
Theorem
c5caa..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
prim1
(
aae7a..
x2
x3
)
(
ac767..
x0
x1
)
(proof)
Theorem
8f68d..
:
∀ x0 x1 x2 .
prim1
x2
(
ac767..
x0
x1
)
⟶
prim1
(
e76d4..
x2
)
x0
(proof)
Theorem
fd5b7..
:
∀ x0 x1 x2 .
prim1
x2
(
ac767..
x0
x1
)
⟶
prim1
(
22ca9..
x2
)
x1
(proof)
Theorem
713d5..
:
∀ x0 x1 x2 x3 .
prim1
(
aae7a..
x2
x3
)
(
ac767..
x0
x1
)
⟶
prim1
x2
x0
(proof)
Theorem
4949d..
:
∀ x0 x1 x2 x3 .
prim1
(
aae7a..
x2
x3
)
(
ac767..
x0
x1
)
⟶
prim1
x3
x1
(proof)
Param
a4c2a..
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Definition
f482f..
:=
λ x0 x1 .
a4c2a..
x0
(
λ x2 .
∀ x3 : ο .
(
∀ x4 .
x2
=
aae7a..
x1
x4
⟶
x3
)
⟶
x3
)
22ca9..
Theorem
f5701..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
(
x1
x2
)
⟶
prim1
(
aae7a..
x2
x3
)
(
0fc90..
x0
x1
)
(proof)
Theorem
7d8a1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
aae7a..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
9b331..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
prim1
x2
(
0fc90..
x0
x1
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
aae7a..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Known
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
Theorem
aa929..
:
∀ x0 x1 x2 .
prim1
(
aae7a..
x1
x2
)
x0
⟶
prim1
x2
(
f482f..
x0
x1
)
(proof)
Known
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
2a2bc..
:
∀ x0 x1 x2 .
prim1
x2
(
f482f..
x0
x1
)
⟶
prim1
(
aae7a..
x1
x2
)
x0
(proof)
Theorem
69f30..
:
∀ x0 x1 x2 .
iff
(
prim1
x2
(
f482f..
x0
x1
)
)
(
prim1
(
aae7a..
x1
x2
)
x0
)
(proof)
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
3c674..
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
4a7ef..
Theorem
9e5b2..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nIn
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
4a7ef..
(proof)
Known
a6d0f..
:
∀ x0 x1 .
prim1
x1
(
e76d4..
x0
)
⟶
prim1
(
aae7a..
4a7ef..
x1
)
x0
Known
2ef56..
:
∀ x0 x1 .
prim1
(
aae7a..
4a7ef..
x1
)
x0
⟶
prim1
x1
(
e76d4..
x0
)
Theorem
76a87..
:
∀ x0 .
e76d4..
x0
=
f482f..
x0
4a7ef..
(proof)
Known
98a9e..
:
∀ x0 x1 .
prim1
x1
(
22ca9..
x0
)
⟶
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x1
)
x0
Known
36427..
:
∀ x0 x1 .
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x1
)
x0
⟶
prim1
x1
(
22ca9..
x0
)
Theorem
0ba89..
:
∀ x0 .
22ca9..
x0
=
f482f..
x0
(
4ae4a..
4a7ef..
)
(proof)
Theorem
3f040..
:
∀ x0 x1 .
f482f..
(
aae7a..
x0
x1
)
4a7ef..
=
x0
(proof)
Theorem
a283f..
:
∀ x0 x1 .
f482f..
(
aae7a..
x0
x1
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
2f64c..
:
∀ x0 x1 x2 .
prim1
x2
(
aae7a..
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
aae7a..
4a7ef..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
aae7a..
(
4ae4a..
4a7ef..
)
x4
)
⟶
x3
)
⟶
x3
)
Known
cf31f..
:
∀ x0 x1 x2 x3 .
aae7a..
x0
x1
=
aae7a..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
a7149..
:
∀ x0 x1 x2 .
nIn
x2
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
f482f..
(
aae7a..
x0
x1
)
x2
=
4a7ef..
(proof)
Theorem
33e74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
4a7ef..
)
x0
(proof)
Theorem
35b50..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
(
4ae4a..
4a7ef..
)
)
(
x1
(
f482f..
x2
4a7ef..
)
)
(proof)
Definition
cad8f..
:=
λ x0 .
aae7a..
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
=
x0
Theorem
73bc9..
:
∀ x0 x1 .
cad8f..
(
aae7a..
x0
x1
)
(proof)
Known
2532b..
:
∀ x0 x1 x2 .
prim1
x0
(
prim2
x1
x2
)
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
4b3cb..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
(
aae7a..
4a7ef..
x2
)
(
aae7a..
x0
x1
)
Known
2391b..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x2
)
(
aae7a..
x0
x1
)
Known
2ea0c..
:
Subq
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
prim2
4a7ef..
(
4ae4a..
4a7ef..
)
)
Theorem
dcd87..
:
∀ x0 .
(
∀ x1 .
prim1
x1
x0
⟶
and
(
cad8f..
x1
)
(
prim1
(
f482f..
x1
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
cad8f..
x0
(proof)
Theorem
dfdb3..
:
∀ x0 x1 .
cad8f..
x0
⟶
prim1
x0
x1
⟶
prim1
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
(
f482f..
x1
(
f482f..
x0
4a7ef..
)
)
(proof)
Definition
6b93f..
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
x2
=
aae7a..
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Theorem
7d7d0..
:
cad8f..
=
6b93f..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Param
If_i
:
ο
→
ι
→
ι
→
ι
Theorem
d9414..
:
∀ x0 x1 .
6b93f..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
x1
)
)
(proof)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
5c667..
:
4ae4a..
4a7ef..
=
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
f71c6..
:
∀ x0 x1 .
aae7a..
x0
x1
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
3097a..
:=
λ x0 .
λ x1 :
ι → ι
.
1216a..
(
e5b72..
(
0fc90..
x0
(
λ x2 .
prim3
(
x1
x2
)
)
)
)
(
λ x2 .
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
UnionI
:
∀ x0 x1 x2 .
prim1
x1
x2
⟶
prim1
x2
x0
⟶
prim1
x1
(
prim3
x0
)
Theorem
8d403..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
prim1
x3
x2
⟶
and
(
cad8f..
x3
)
(
prim1
(
f482f..
x3
4a7ef..
)
x0
)
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
⟶
prim1
x2
(
3097a..
x0
x1
)
(proof)
Known
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
Theorem
85578..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
and
(
∀ x3 .
prim1
x3
x2
⟶
and
(
cad8f..
x3
)
(
prim1
(
f482f..
x3
4a7ef..
)
x0
)
)
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
(proof)
Theorem
5795e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
prim1
x2
(
3097a..
x0
x1
)
)
(
and
(
∀ x3 .
prim1
x3
x2
⟶
and
(
cad8f..
x3
)
(
prim1
(
f482f..
x3
4a7ef..
)
x0
)
)
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
)
(proof)
Theorem
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
(proof)
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Theorem
d8d74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
(
3097a..
x0
x1
)
⟶
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
(proof)
Theorem
cce19..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
∀ x3 .
prim1
x3
(
3097a..
x0
x1
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
Subq
(
f482f..
x2
x4
)
(
f482f..
x3
x4
)
)
⟶
Subq
x2
x3
(proof)
Theorem
6e275..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
∀ x3 .
prim1
x3
(
3097a..
x0
x1
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
f482f..
x2
x4
=
f482f..
x3
x4
)
⟶
x2
=
x3
(proof)
Theorem
34894..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
0fc90..
x0
(
f482f..
x2
)
=
x2
(proof)
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Theorem
204eb..
:
aae7a..
=
λ x1 x2 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x1
x2
)
(proof)
Theorem
1cc2a..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
(
x1
x2
)
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
(
0fc90..
x0
x1
)
(proof)
Theorem
8c3eb..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x4
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
2d4b0..
:
∀ x0 x1 x2 x3 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
x1
)
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
6f2e8..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
4a7ef..
=
x0
(proof)
Theorem
15d37..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Definition
38062..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
1216a..
(
0fc90..
x0
x1
)
(
λ x3 .
x2
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
Theorem
380ca..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
(
x1
x3
)
⟶
x2
x3
x4
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x3
x4
)
)
(
38062..
x0
x1
x2
)
(proof)
Theorem
fbd31..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
(
38062..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
(
x1
x5
)
)
(
and
(
x3
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x5
x7
)
)
(
x2
x5
x7
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Theorem
0d9ad..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x3
x4
)
)
(
38062..
x0
x1
x2
)
⟶
and
(
and
(
prim1
x3
x0
)
(
prim1
x4
(
x1
x3
)
)
)
(
x2
x3
x4
)
(proof)
Theorem
41662..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x3
x4
)
)
(
38062..
x0
x1
x2
)
⟶
prim1
x3
x0
(proof)
Theorem
36b09..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x3
x4
)
)
(
38062..
x0
x1
x2
)
⟶
prim1
x4
(
x1
x3
)
(proof)
Theorem
338b2..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x3
x4
)
)
(
38062..
x0
x1
x2
)
⟶
x2
x3
x4
(proof)
Definition
76607..
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 : ο .
(
∀ x5 .
x1
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x3
x5
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
Theorem
78561..
:
∀ x0 x1 .
76607..
x0
⟶
76607..
x1
⟶
(
∀ x2 x3 .
iff
(
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
x0
)
(
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
x1
)
)
⟶
x0
=
x1
(proof)
Theorem
f6f3f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
76607..
(
38062..
x0
x1
x2
)
(proof)
Theorem
5af6c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
(
x1
x4
)
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
38062..
x0
x1
x2
=
38062..
x0
x1
x3
(proof)
Theorem
a850e..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Subq
(
0fc90..
x0
x1
)
(
0fc90..
x0
x2
)
(proof)
Theorem
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
(proof)
Theorem
7e4c2..
:
∀ x0 .
∀ x1 :
ι → ι
.
0fc90..
x0
(
f482f..
(
0fc90..
x0
x1
)
)
=
0fc90..
x0
x1
(proof)
Theorem
bcb22..
:
∀ x0 x1 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
)
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
(proof)
Definition
25755..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
0fc90..
x0
(
λ x3 .
0fc90..
(
x1
x3
)
(
x2
x3
)
)
Theorem
1b91d..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
(
x1
x3
)
⟶
f482f..
(
f482f..
(
25755..
x0
x1
x2
)
x3
)
x4
=
x2
x3
x4
(proof)
Theorem
ed27c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
(
x1
x4
)
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
25755..
x0
x1
x2
=
25755..
x0
x1
x3
(proof)
Definition
0fc90..
:=
0fc90..
Definition
f482f..
:=
f482f..
Definition
eb53d..
:=
λ x0 .
25755..
x0
(
λ x1 .
x0
)
Definition
e3162..
:=
λ x0 x1 .
f482f..
(
f482f..
x0
x1
)
Definition
1216a..
:=
1216a..
Definition
decode_p
:=
λ x0 x1 .
prim1
x1
x0
Definition
d2155..
:=
λ x0 .
38062..
x0
(
λ x1 .
x0
)
Definition
2b2e3..
:=
λ x0 x1 x2 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x1
x2
)
)
x0
Definition
e0e40..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
1216a..
(
e5b72..
x0
)
(
λ x2 .
x1
(
λ x3 .
prim1
x3
x2
)
)
Definition
decode_c
:=
λ x0 .
λ x1 :
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
and
(
∀ x4 .
iff
(
x1
x4
)
(
prim1
x4
x3
)
)
(
prim1
x3
x0
)
⟶
x2
)
⟶
x2
Theorem
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
(proof)
Theorem
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
(proof)
Theorem
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
(proof)
Theorem
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
(proof)
Known
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
(proof)
Theorem
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
(proof)
Theorem
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
(proof)
Theorem
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
(proof)
Known
d129e..
:
∀ x0 .
∀ x1 :
ι → ο
.
prim1
(
1216a..
x0
x1
)
(
e5b72..
x0
)
Theorem
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
(proof)
Theorem
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
(proof)