Search for blocks/addresses/...

Proofgold Asset

asset id
205bb94e1cb9e6a6e7c01dd6fadd85a66ace11d84d498db4dcc608011825bdc1
asset hash
bde798f541ad0751c6f9b09e5af6bee6f328ed0c75e7eb8af5c25e7c690c009f
bday / block
4867
tx
cde1e..
preasset
theory published by Pr6Pc..
Prim 0/2b9fe.. : (ιο) → ι
Axiom Eps_i_axEps_i_ax : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (prim0 x0)
Def FalseFalse : ο := ∀ x0 : ο . x0
Def notnot : οο := λ x0 : ο . x0False
Def andand : οοο := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Def oror : οοο := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Def iffiff : οοο := λ x0 x1 : ο . and (x0x1) (x1x0)
Axiom prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Prim 1/5341a.. : ιιο
Def SubqSubq : ιιο := λ x0 x1 . ∀ x2 . x2x0x2x1
Axiom set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Axiom In_indIn_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . x0 x1
Prim 2/dee93.. : ι
Axiom EmptyAxEmptyAx : not (∀ x0 : ο . (∀ x1 . x10x0)x0)
Prim 3/e1447.. : ιι
Axiom UnionEqUnionEq : ∀ x0 x1 . iff (x1prim3 x0) (∀ x2 : ο . (∀ x3 . and (x1x3) (x3x0)x2)x2)
Prim 4/0a620.. : ιι
Axiom PowerEqPowerEq : ∀ x0 x1 . iff (x1prim4 x0) (x1x0)
Prim 5/8641c.. : ι(ιι) → ι
Axiom ReplEqReplEq : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . iff (x2prim5 x0 x1) (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = x1 x4)x3)x3)
Def TransSetTransSet : ιο := λ x0 . ∀ x1 . x1x0x1x0
Def Union_closedUnion_closed : ιο := λ x0 . ∀ x1 . x1x0prim3 x1x0
Def Power_closedPower_closed : ιο := λ x0 . ∀ x1 . x1x0prim4 x1x0
Def Repl_closedRepl_closed : ιο := λ x0 . ∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)prim5 x1 x2x0
Def ZF_closedZF_closed : ιο := λ x0 . and (and (Union_closed x0) (Power_closed x0)) (Repl_closed x0)
Prim 6/1ae92.. : ιι
Axiom UnivOf_InUnivOf_In : ∀ x0 . x0prim6 x0
Axiom UnivOf_TransSetUnivOf_TransSet : ∀ x0 . TransSet (prim6 x0)
Axiom UnivOf_ZF_closedUnivOf_ZF_closed : ∀ x0 . ZF_closed (prim6 x0)
Axiom UnivOf_MinUnivOf_Min : ∀ x0 x1 . x0x1TransSet x1ZF_closed x1prim6 x0x1