Search for blocks/addresses/...
Proofgold Asset
asset id
205bb94e1cb9e6a6e7c01dd6fadd85a66ace11d84d498db4dcc608011825bdc1
asset hash
bde798f541ad0751c6f9b09e5af6bee6f328ed0c75e7eb8af5c25e7c690c009f
bday / block
4867
tx
cde1e..
preasset
theory published by
Pr6Pc..
Prim
0
/
2b9fe..
:
(
ι
→
ο
) →
ι
Axiom
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Def
False
False
:
ο
:=
∀ x0 : ο .
x0
Def
not
not
:
ο
→
ο
:=
λ x0 : ο .
x0
⟶
False
Def
and
and
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Def
or
or
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Def
iff
iff
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Axiom
prop_ext
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Prim
1
/
5341a..
:
ι
→
ι
→
ο
Def
Subq
Subq
:
ι
→
ι
→
ο
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Axiom
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Axiom
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Prim
2
/
dee93..
:
ι
Axiom
EmptyAx
EmptyAx
:
not
(
∀ x0 : ο .
(
∀ x1 .
x1
∈
0
⟶
x0
)
⟶
x0
)
Prim
3
/
e1447..
:
ι
→
ι
Axiom
UnionEq
UnionEq
:
∀ x0 x1 .
iff
(
x1
∈
prim3
x0
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x1
∈
x3
)
(
x3
∈
x0
)
⟶
x2
)
⟶
x2
)
Prim
4
/
0a620..
:
ι
→
ι
Axiom
PowerEq
PowerEq
:
∀ x0 x1 .
iff
(
x1
∈
prim4
x0
)
(
x1
⊆
x0
)
Prim
5
/
8641c..
:
ι
→
(
ι
→
ι
) →
ι
Axiom
ReplEq
ReplEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
x2
∈
prim5
x0
x1
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
)
Def
TransSet
TransSet
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Def
Union_closed
Union_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Def
Power_closed
Power_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Def
Repl_closed
Repl_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Def
ZF_closed
ZF_closed
:
ι
→
ο
:=
λ x0 .
and
(
and
(
Union_closed
x0
)
(
Power_closed
x0
)
)
(
Repl_closed
x0
)
Prim
6
/
1ae92..
:
ι
→
ι
Axiom
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Axiom
UnivOf_TransSet
UnivOf_TransSet
:
∀ x0 .
TransSet
(
prim6
x0
)
Axiom
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Axiom
UnivOf_Min
UnivOf_Min
:
∀ x0 x1 .
x0
∈
x1
⟶
TransSet
x1
⟶
ZF_closed
x1
⟶
prim6
x0
⊆
x1