Search for blocks/addresses/...
Proofgold Asset
asset id
bf7c8a8fa0942e97e6a46e559f3f930faf0988a98924eb09a55298d136316578
asset hash
a40a0113c0103bd7d29d9f91775a4b2b7da9fce5921ee818f5c27ed85ef2a402
bday / block
2902
tx
b9756..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
81367..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
1216a..
x0
x3
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
9f6be..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
4a7ef..
=
x0
Theorem
c51b5..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
81367..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
3a064..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
f482f..
(
81367..
x0
x1
x2
x3
)
4a7ef..
(proof)
Known
8a328..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
1a110..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
81367..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
2e323..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x1
x4
=
f482f..
(
f482f..
(
81367..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
142e6..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
65b5f..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
81367..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
9fe37..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
81367..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
62a6b..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
32c95..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
81367..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x4
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
f5ffc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x3
x4
=
decode_p
(
f482f..
(
81367..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
c5aab..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι → ο
.
81367..
x0
x2
x4
x6
=
81367..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
=
x7
x8
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
f9c4e..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x0
⟶
x1
x7
=
x2
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x3
x7
x8
)
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
iff
(
x5
x7
)
(
x6
x7
)
)
⟶
81367..
x0
x1
x3
x5
=
81367..
x0
x2
x4
x6
(proof)
Definition
86f84..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x1
(
81367..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
d85c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
86f84..
(
81367..
x0
x1
x2
x3
)
(proof)
Theorem
cd0a3..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
86f84..
(
81367..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x4
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
81349..
:
∀ x0 .
86f84..
x0
⟶
x0
=
81367..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
3e28b..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
dff40..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
3e28b..
(
81367..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
7d7bf..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
90754..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
7d7bf..
(
81367..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
1bcc7..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
x3
)
)
)
Theorem
12274..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1bcc7..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f7360..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
f482f..
(
1bcc7..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
72790..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1bcc7..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
b995b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x1
x4
=
f482f..
(
f482f..
(
1bcc7..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
13468..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1bcc7..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
fe79a..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
1bcc7..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
1502a..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1bcc7..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
915b7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
=
f482f..
(
1bcc7..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
1b17b..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 .
1bcc7..
x0
x2
x4
x6
=
1bcc7..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
x6
=
x7
)
(proof)
Theorem
e4331..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
x1
x6
=
x2
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
x3
x6
x7
)
(
x4
x6
x7
)
)
⟶
1bcc7..
x0
x1
x3
x5
=
1bcc7..
x0
x2
x4
x5
(proof)
Definition
6100b..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
1bcc7..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
39190..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
6100b..
(
1bcc7..
x0
x1
x2
x3
)
(proof)
Theorem
f7341..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
6100b..
(
1bcc7..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x4
)
x0
(proof)
Theorem
5041b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
6100b..
(
1bcc7..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
6f356..
:
∀ x0 .
6100b..
x0
⟶
x0
=
1bcc7..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
79719..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
33e73..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
79719..
(
1bcc7..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
7557e..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
3e25e..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
7557e..
(
1bcc7..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
1cd8e..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
1216a..
x0
x2
)
x3
)
)
)
Theorem
47259..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
1cd8e..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
9db4b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
x0
=
f482f..
(
1cd8e..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
59148..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
1cd8e..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
02a4b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x1
x4
=
f482f..
(
f482f..
(
1cd8e..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
dadc3..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
1cd8e..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
13aa7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x2
x4
=
decode_p
(
f482f..
(
1cd8e..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
72e88..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
1cd8e..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
42ff4..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
x3
=
f482f..
(
1cd8e..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
c9420..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
∀ x6 x7 .
1cd8e..
x0
x2
x4
x6
=
1cd8e..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
x6
=
x7
)
(proof)
Theorem
6a79a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
x1
x6
=
x2
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x6
)
(
x4
x6
)
)
⟶
1cd8e..
x0
x1
x3
x5
=
1cd8e..
x0
x2
x4
x5
(proof)
Definition
49e31..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
1cd8e..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
b756b..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
49e31..
(
1cd8e..
x0
x1
x2
x3
)
(proof)
Theorem
42fa4..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
49e31..
(
1cd8e..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x4
)
x0
(proof)
Theorem
c70df..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
49e31..
(
1cd8e..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
da228..
:
∀ x0 .
49e31..
x0
⟶
x0
=
1cd8e..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
68d20..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
b8cba..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
68d20..
(
1cd8e..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
4ea01..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
36171..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
x5
x6
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
4ea01..
(
1cd8e..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
3bbe6..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ο
.
λ x3 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
1216a..
x0
x3
)
)
)
)
Theorem
04e59..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
3bbe6..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
3a341..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
f482f..
(
3bbe6..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
42b73..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
3bbe6..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
f2271..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x1
x4
x5
=
2b2e3..
(
f482f..
(
3bbe6..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
2ef07..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
3bbe6..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
9bb3e..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
3bbe6..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
aacc9..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
3bbe6..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x4
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
0b18c..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
x3
x4
=
decode_p
(
f482f..
(
3bbe6..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(proof)
Theorem
6adab..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι → ο
.
3bbe6..
x0
x2
x4
x6
=
3bbe6..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x2
x8
x9
=
x3
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
=
x7
x8
)
(proof)
Theorem
827c4..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x1
x7
x8
)
(
x2
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x3
x7
x8
)
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
iff
(
x5
x7
)
(
x6
x7
)
)
⟶
3bbe6..
x0
x1
x3
x5
=
3bbe6..
x0
x2
x4
x6
(proof)
Definition
0b60a..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x1
(
3bbe6..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
e65f7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
0b60a..
(
3bbe6..
x0
x1
x2
x3
)
(proof)
Theorem
dc474..
:
∀ x0 .
0b60a..
x0
⟶
x0
=
3bbe6..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
ed32f..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
33736..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
ed32f..
(
3bbe6..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
29e37..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
53bce..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x4
x8
)
(
x7
x8
)
)
⟶
x0
x1
x5
x6
x7
=
x0
x1
x2
x3
x4
)
⟶
29e37..
(
3bbe6..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
1f7e2..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
x3
)
)
)
Theorem
56e41..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1f7e2..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
d8aec..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
f482f..
(
1f7e2..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
a72d5..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1f7e2..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
45188..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x1
x4
x5
=
2b2e3..
(
f482f..
(
1f7e2..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
39d3e..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1f7e2..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
b362f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
(
1f7e2..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
c3fd7..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
1f7e2..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
d2b0c..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
x3
=
f482f..
(
1f7e2..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
1d1cc..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ο
.
∀ x6 x7 .
1f7e2..
x0
x2
x4
x6
=
1f7e2..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x2
x8
x9
=
x3
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
x6
=
x7
)
(proof)
Theorem
ca557..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
x1
x6
x7
)
(
x2
x6
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
x3
x6
x7
)
(
x4
x6
x7
)
)
⟶
1f7e2..
x0
x1
x3
x5
=
1f7e2..
x0
x2
x4
x5
(proof)
Definition
d97ab..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
1f7e2..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
a0ca8..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
d97ab..
(
1f7e2..
x0
x1
x2
x3
)
(proof)
Theorem
2b61f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
d97ab..
(
1f7e2..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
75acf..
:
∀ x0 .
d97ab..
x0
⟶
x0
=
1f7e2..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
85b48..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
46416..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
85b48..
(
1f7e2..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
16053..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
6f4cb..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x7
x8
)
(
x6
x7
x8
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
16053..
(
1f7e2..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)