Search for blocks/addresses/...

Proofgold Asset

asset id
bf7fcb13673e1f7b15b3567106dc5c750d74e1534c2cfbd0471e38c8b02504b3
asset hash
f265eab4620d2c57f0ec1bdd28dd96b3244f1052c8d885a3d33ba0f352311a0f
bday / block
12334
tx
c59bb..
preasset
doc published by PrGxv..
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param realreal : ι
Param omegaomega : ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoLeSNoLe : ιιο
Param apap : ιιι
Param ordsuccordsucc : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SepSep : ι(ιο) → ι
Param SNoS_SNoS_ : ιι
Param SNoCutSNoCut : ιιι
Param SNoLevSNoLev : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known SNoCutP_SNoCut_omegaSNoCutP_SNoCut_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaSNoCutP x0 x1SNoLev (SNoCut x0 x1)ordsucc omega
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known FalseEFalseE : False∀ x0 : ο . x0
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known omega_TransSetomega_TransSet : TransSet omega
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known minus_SNo_Le_contraminus_SNo_Le_contra : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe (minus_SNo x1) (minus_SNo x0)
Known SNo_approx_real_repSNo_approx_real_rep : ∀ x0 . x0real∀ x1 : ο . (∀ x2 . x2setexp (SNoS_ omega) omega∀ x3 . x3setexp (SNoS_ omega) omega(∀ x4 . x4omegaSNoLt (ap x2 x4) x0)(∀ x4 . x4omegaSNoLt x0 (add_SNo (ap x2 x4) (eps_ x4)))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x2 x5) (ap x2 x4))(∀ x4 . x4omegaSNoLt (add_SNo (ap x3 x4) (minus_SNo (eps_ x4))) x0)(∀ x4 . x4omegaSNoLt x0 (ap x3 x4))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x3 x4) (ap x3 x5))SNoCutP (prim5 omega (ap x2)) (prim5 omega (ap x3))x0 = SNoCut (prim5 omega (ap x2)) (prim5 omega (ap x3))x1)x1
Known SNoCut_LeSNoCut_Le : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoLe (SNoCut x0 x1) (SNoCut x2 x3)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Theorem real_complete1real_complete1 : ∀ x0 . x0setexp real omega∀ x1 . x1setexp real omega(∀ x2 . x2omegaand (and (SNoLe (ap x0 x2) (ap x1 x2)) (SNoLe (ap x0 x2) (ap x0 (ordsucc x2)))) (SNoLe (ap x1 (ordsucc x2)) (ap x1 x2)))∀ x2 : ο . (∀ x3 . and (x3real) (∀ x4 . x4omegaand (SNoLe (ap x0 x4) x3) (SNoLe x3 (ap x1 x4)))x2)x2 (proof)
Param add_natadd_nat : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known nat_1nat_1 : nat_p 1
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem real_complete2real_complete2 : ∀ x0 . x0setexp real omega∀ x1 . x1setexp real omega(∀ x2 . x2omegaand (and (SNoLe (ap x0 x2) (ap x1 x2)) (SNoLe (ap x0 x2) (ap x0 (add_SNo x2 1)))) (SNoLe (ap x1 (add_SNo x2 1)) (ap x1 x2)))∀ x2 : ο . (∀ x3 . and (x3real) (∀ x4 . x4omegaand (SNoLe (ap x0 x4) x3) (SNoLe x3 (ap x1 x4)))x2)x2 (proof)