Search for blocks/addresses/...
Proofgold Asset
asset id
c03d6dd6488657442c73807b8f4eda5c644a717ca8a6b14ec79e69899729625f
asset hash
5c040c3b958dda181e47f3d832e6f6621b0baaa6124db199ebdb6c75aded18f4
bday / block
2838
tx
9e4a5..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
e4ab3..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 :
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
1216a..
x0
x2
)
x3
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
9f6be..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
4a7ef..
=
x0
Theorem
805c9..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
e4ab3..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
deb33..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
x0
=
f482f..
(
e4ab3..
x0
x1
x2
x3
)
4a7ef..
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
8a328..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
d443f..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
e4ab3..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
4e2a6..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x1
x4
x5
=
2b2e3..
(
f482f..
(
e4ab3..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
142e6..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
7f210..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
e4ab3..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
af949..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x2
x4
=
decode_p
(
f482f..
(
e4ab3..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Known
62a6b..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Theorem
f6dbf..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
e4ab3..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
eead3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
x3
=
f482f..
(
e4ab3..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
97d9e..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
∀ x6 x7 .
e4ab3..
x0
x2
x4
x6
=
e4ab3..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x2
x8
x9
=
x3
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
x6
=
x7
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
6261d..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
x1
x6
x7
)
(
x2
x6
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x6
)
(
x4
x6
)
)
⟶
e4ab3..
x0
x1
x3
x5
=
e4ab3..
x0
x2
x4
x5
(proof)
Definition
60280..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
e4ab3..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
77b7d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
60280..
(
e4ab3..
x0
x1
x2
x3
)
(proof)
Theorem
694b1..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
60280..
(
e4ab3..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
b3850..
:
∀ x0 .
60280..
x0
⟶
x0
=
e4ab3..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
07f33..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
f5bac..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
07f33..
(
e4ab3..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
3a2d6..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
caace..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x2
x6
x7
)
(
x5
x6
x7
)
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
3a2d6..
(
e4ab3..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
9a89f..
:=
λ x0 .
λ x1 x2 :
ι → ο
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
1216a..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
1216a..
x0
x2
)
x3
)
)
)
Theorem
6cd62..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
x0
=
9a89f..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
de5ce..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
x0
=
f482f..
(
9a89f..
x0
x1
x2
x3
)
4a7ef..
(proof)
Theorem
9c447..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
x0
=
9a89f..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
6b100..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x1
x4
=
decode_p
(
f482f..
(
9a89f..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
de13d..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
x0
=
9a89f..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x5
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
29b74..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 x4 .
prim1
x4
x0
⟶
x2
x4
=
decode_p
(
f482f..
(
9a89f..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
ba999..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
x0
=
9a89f..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
bb846..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
x3
=
f482f..
(
9a89f..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
1bc46..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι → ο
.
∀ x6 x7 .
9a89f..
x0
x2
x4
x6
=
9a89f..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
x2
x8
=
x3
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
=
x5
x8
)
)
(
x6
=
x7
)
(proof)
Theorem
54e98..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι → ο
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
iff
(
x1
x6
)
(
x2
x6
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x6
)
(
x4
x6
)
)
⟶
9a89f..
x0
x1
x3
x5
=
9a89f..
x0
x2
x4
x5
(proof)
Definition
ce4b9..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
x1
(
9a89f..
x2
x3
x4
x5
)
)
⟶
x1
x0
Theorem
41c46..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
ce4b9..
(
9a89f..
x0
x1
x2
x3
)
(proof)
Theorem
82284..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
ce4b9..
(
9a89f..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
(proof)
Theorem
63f7b..
:
∀ x0 .
ce4b9..
x0
⟶
x0
=
9a89f..
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
447ab..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
ab844..
:
∀ x0 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
447ab..
(
9a89f..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)
Definition
4162f..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
3c62e..
:
∀ x0 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
(
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x6
)
(
x5
x6
)
)
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x7
)
(
x6
x7
)
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
4162f..
(
9a89f..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
(proof)