Search for blocks/addresses/...

Proofgold Asset

asset id
543800aacc7eb7a3d1d3876c9676a70f216b738f6e63b564f7d3fb9ebc3df52d
asset hash
c0698e36ed1cf71dc9bf547d4bb7bee0a60851ef198a9266c26362867d613935
bday / block
26793
tx
010aa..
preasset
doc published by Pr5Zc..
Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 . x0 x2x0 x3x0 x4x0 x5x0 x6x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))
Known 42e5e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x6 (x1 x5 (x1 x4 (x1 x7 x9))))))
Theorem d1908.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x4 (x1 x8 x5)))))) (proof)
Theorem df5ac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x4 (x1 x8 x5)))))) (proof)
Known eb6d4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x4 (x1 x5 x9))))))
Theorem 77094.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x4 (x1 x5 x8)))))) (proof)
Theorem 23ac1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x4 (x1 x5 x8)))))) (proof)
Known 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7))))
Theorem 79fc0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x5 (x1 x8 x4)))))) (proof)
Theorem 44e0a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x5 (x1 x8 x4)))))) (proof)
Known af054.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x5 (x1 x4 x9))))))
Theorem c747a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x5 (x1 x4 x8)))))) (proof)
Theorem cb143.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x5 (x1 x4 x8)))))) (proof)
Known 2676b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x6 (x1 x5 (x1 x7 (x1 x4 x9))))))
Theorem a9bd3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x8 (x1 x5 x4)))))) (proof)
Theorem 8659e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x8 (x1 x5 x4)))))) (proof)
Theorem 4aa8b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x8 (x1 x4 x5)))))) (proof)
Theorem 6fe9b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x6 (x1 x8 (x1 x4 x5)))))) (proof)
Known 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 . x0 x2x0 x3x0 x4x0 x5x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5))
Theorem 1846c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x4 (x1 x8 x6)))))) (proof)
Theorem 9651a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x4 (x1 x8 x6)))))) (proof)
Known 051e5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x4 (x1 x6 x9))))))
Theorem 1ea7b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x4 (x1 x6 x8)))))) (proof)
Theorem 2cbb5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x4 (x1 x6 x8)))))) (proof)
Known 54e2a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x6 (x1 x4 (x1 x5 (x1 x7 x9))))))
Theorem cb4c1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x6 (x1 x8 x4)))))) (proof)
Theorem 832ac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x6 (x1 x8 x4)))))) (proof)
Known e5cbc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x6 (x1 x4 x9))))))
Theorem 94b23.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x6 (x1 x4 x8)))))) (proof)
Theorem 7a0b0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x6 (x1 x4 x8)))))) (proof)
Known 3fab8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x6 (x1 x4 (x1 x7 (x1 x5 x9))))))
Theorem c6296.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x8 (x1 x6 x4)))))) (proof)
Theorem 3509d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x8 (x1 x6 x4)))))) (proof)
Theorem 53096.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x8 (x1 x4 x6)))))) (proof)
Theorem 6e8ef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x5 (x1 x8 (x1 x4 x6)))))) (proof)
Theorem 39c95.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x5 (x1 x8 x6)))))) (proof)
Theorem 5b4c2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x5 (x1 x8 x6)))))) (proof)
Known f3a8b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x5 (x1 x6 x9))))))
Theorem eedbf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x5 (x1 x6 x8)))))) (proof)
Theorem 858c7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x5 (x1 x6 x8)))))) (proof)
Theorem 3f5fd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x6 (x1 x8 x5)))))) (proof)
Theorem df4f4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x6 (x1 x8 x5)))))) (proof)
Known b53b8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x6 (x1 x5 x9))))))
Theorem 269f5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x6 (x1 x5 x8)))))) (proof)
Theorem e927b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x6 (x1 x5 x8)))))) (proof)
Theorem 8177e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x8 (x1 x6 x5)))))) (proof)
Theorem 6fa06.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x8 (x1 x6 x5)))))) (proof)
Theorem b62ad.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x8 (x1 x5 x6)))))) (proof)
Theorem 0e1a0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x7 (x1 x4 (x1 x8 (x1 x5 x6)))))) (proof)
Theorem b6597.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem f87b1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem 22414.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem 12bb2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem bf759.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x5 (x1 x6 x4)))))) (proof)
Theorem 24d36.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x5 (x1 x6 x4)))))) (proof)
Theorem b385d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 95d75.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 56db0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem b7d1d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem a20cf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x6 (x1 x4 x5)))))) (proof)
Theorem 54fb6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x7 (x1 x6 (x1 x4 x5)))))) (proof)
Theorem f0fa9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x4 (x1 x7 x5)))))) (proof)
Theorem c1a3b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x4 (x1 x7 x5)))))) (proof)
Theorem f10ae.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x4 (x1 x5 x7)))))) (proof)
Theorem 1a1eb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x4 (x1 x5 x7)))))) (proof)
Theorem 32e56.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x5 (x1 x7 x4)))))) (proof)
Theorem 9c69b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x5 (x1 x7 x4)))))) (proof)
Theorem d51e9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x5 (x1 x4 x7)))))) (proof)
Theorem cc154.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x5 (x1 x4 x7)))))) (proof)
Theorem 4b9f6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x7 (x1 x5 x4)))))) (proof)
Theorem f416d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x7 (x1 x5 x4)))))) (proof)
Theorem 6cfee.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x7 (x1 x4 x5)))))) (proof)
Theorem 01c89.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x6 (x1 x7 (x1 x4 x5)))))) (proof)
Theorem 21d3a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x4 (x1 x7 x6)))))) (proof)
Theorem 52526.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x4 (x1 x7 x6)))))) (proof)
Theorem 63a15.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x4 (x1 x6 x7)))))) (proof)
Theorem de4e9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x4 (x1 x6 x7)))))) (proof)
Theorem b7255.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x6 (x1 x7 x4)))))) (proof)
Theorem 408b1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x6 (x1 x7 x4)))))) (proof)
Theorem 04df5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x6 (x1 x4 x7)))))) (proof)
Theorem cab70.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x6 (x1 x4 x7)))))) (proof)
Theorem b19c1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x7 (x1 x6 x4)))))) (proof)
Theorem 82904.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x7 (x1 x6 x4)))))) (proof)
Theorem 127bb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x7 (x1 x4 x6)))))) (proof)
Theorem d545c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x5 (x1 x7 (x1 x4 x6)))))) (proof)
Theorem a6430.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x5 (x1 x7 x6)))))) (proof)
Theorem 1ec19.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x5 (x1 x7 x6)))))) (proof)
Theorem 354bd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x5 (x1 x6 x7)))))) (proof)
Theorem fa6a6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x5 (x1 x6 x7)))))) (proof)
Theorem 8e86f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x6 (x1 x7 x5)))))) (proof)
Theorem 82464.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x6 (x1 x7 x5)))))) (proof)
Theorem 0bdac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x6 (x1 x5 x7)))))) (proof)
Theorem 8cd69.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x6 (x1 x5 x7)))))) (proof)
Theorem bcdd3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x7 (x1 x6 x5)))))) (proof)
Theorem 630d5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x7 (x1 x6 x5)))))) (proof)
Theorem 48d14.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x7 (x1 x5 x6)))))) (proof)
Theorem 59cc8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x2 (x1 x3 (x1 x8 (x1 x4 (x1 x7 (x1 x5 x6)))))) (proof)
Known b540a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x3 (x1 x7 (x1 x2 (x1 x6 (x1 x4 (x1 x5 x9))))))
Theorem 98575.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem a29f0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem 06c69.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem 9970b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem e160c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x6 x4)))))) (proof)
Theorem 5566b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x6 x4)))))) (proof)
Known 8aaf9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x3 (x1 x7 (x1 x2 (x1 x6 (x1 x5 (x1 x4 x9))))))
Theorem a3d5a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 5bd76.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 8113b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem f5d1c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem fd368.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x6 (x1 x4 x5)))))) (proof)
Theorem d95c8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x6 (x1 x4 x5)))))) (proof)
Known 60649.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x3 (x1 x7 (x1 x2 (x1 x5 (x1 x4 (x1 x6 x9))))))
Theorem df08e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x4 (x1 x7 x5)))))) (proof)
Theorem 07abf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x4 (x1 x7 x5)))))) (proof)
Theorem d1164.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x4 (x1 x5 x7)))))) (proof)
Theorem 2826e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x4 (x1 x5 x7)))))) (proof)
Theorem 8d1ad.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x5 (x1 x7 x4)))))) (proof)
Theorem 21fb6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x5 (x1 x7 x4)))))) (proof)
Theorem afb90.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x5 (x1 x4 x7)))))) (proof)
Theorem 77014.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x5 (x1 x4 x7)))))) (proof)
Known 92230.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x3 (x1 x7 (x1 x2 (x1 x5 (x1 x6 (x1 x4 x9))))))
Theorem 804e8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x7 (x1 x5 x4)))))) (proof)
Theorem 47a3c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x9 (x1 x3 (x1 x8 (x1 x2 (x1 x6 (x1 x7 (x1 x5 x4)))))) (proof)