Search for blocks/addresses/...

Proofgold Asset

asset id
c09150ac9a78d889804f159089c7f440e82843382a93fb1ac3be0e77df58ab16
asset hash
aa50e2bb36e1f21c53659e0928d38351bffd74ec5e6e3284f059da8cded598d2
bday / block
2903
tx
92b79..
preasset
doc published by PrGxv..
Param 0fc90.. : ι(ιι) → ι
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param If_i : οιιι
Param eb53d.. : ιCT2 ι
Definition 6640c.. := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι . λ x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (0fc90.. x0 x3) x4))))
Param f482f.. : ιιι
Known 7d2e2.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) 4a7ef.. = x0
Theorem 16c83.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . x0 = 6640c.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 12fdb.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . x0 = f482f.. (6640c.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Param e3162.. : ιιιι
Known 504a8.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. 4a7ef..) = x1
Known 35054.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0e3162.. (eb53d.. x0 x1) x2 x3 = x1 x2 x3
Theorem 81ecf.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . x0 = 6640c.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 78c97.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (6640c.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Known fb20c.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. 4a7ef..)) = x2
Theorem 6257c.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . x0 = 6640c.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem d358e.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (6640c.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Known 431f3.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x3
Known f22ec.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0f482f.. (0fc90.. x0 x1) x2 = x1 x2
Theorem 0dd1a.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . x0 = 6640c.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 (proof)
Theorem 951c5.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 . prim1 x5 x0x3 x5 = f482f.. (f482f.. (6640c.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Known ffdcd.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x4
Theorem 39ea5.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . x0 = 6640c.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 82755.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . x4 = f482f.. (6640c.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem 9942f.. : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . ∀ x8 x9 . 6640c.. x0 x2 x4 x6 x8 = 6640c.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (x8 = x9) (proof)
Known 4402a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . prim1 x3 x0x1 x3 = x2 x3)0fc90.. x0 x1 = 0fc90.. x0 x2
Known 8fdaf.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0x1 x3 x4 = x2 x3 x4)eb53d.. x0 x1 = eb53d.. x0 x2
Theorem 983e3.. : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . ∀ x7 . (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x1 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 x8 x9 = x4 x8 x9)(∀ x8 . prim1 x8 x0x5 x8 = x6 x8)6640c.. x0 x1 x3 x5 x7 = 6640c.. x0 x2 x4 x6 x7 (proof)
Definition 7e4ad.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι . (∀ x6 . prim1 x6 x2prim1 (x5 x6) x2)∀ x6 . prim1 x6 x2x1 (6640c.. x2 x3 x4 x5 x6))x1 x0
Theorem 81c5c.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι . (∀ x4 . prim1 x4 x0prim1 (x3 x4) x0)∀ x4 . prim1 x4 x07e4ad.. (6640c.. x0 x1 x2 x3 x4) (proof)
Theorem 313db.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . 7e4ad.. (6640c.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem e3173.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . 7e4ad.. (6640c.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0 (proof)
Theorem aca4e.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . 7e4ad.. (6640c.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x3 x5) x0 (proof)
Theorem 6c21e.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . 7e4ad.. (6640c.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem 2ed2d.. : ∀ x0 . 7e4ad.. x0x0 = 6640c.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition 3e570.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι)ι → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem ba422.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι)ι → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)3e570.. (6640c.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 352ba.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι)ι → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem cfdeb.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι)ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)352ba.. (6640c.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Param d2155.. : ι(ιιο) → ι
Definition 8e582.. := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 x4 : ι → ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (d2155.. x0 x3) (d2155.. x0 x4)))))
Theorem a2508.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . x0 = 8e582.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 73df7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 x5 : ι → ι → ο . x5 x0 (f482f.. (8e582.. x0 x1 x2 x3 x4) 4a7ef..)x5 (f482f.. (8e582.. x0 x1 x2 x3 x4) 4a7ef..) x0 (proof)
Theorem ca791.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . x0 = 8e582.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 61575.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (8e582.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem ab871.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . x0 = 8e582.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem 85124.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (8e582.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Param 2b2e3.. : ιιιο
Known 67416.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x02b2e3.. (d2155.. x0 x1) x2 x3 = x1 x2 x3
Theorem 91c59.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . x0 = 8e582.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x4 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 x7 (proof)
Theorem 1cb3e.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = 2b2e3.. (f482f.. (8e582.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Theorem abcfe.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . x0 = 8e582.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x5 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 x7 (proof)
Theorem ea292.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x4 x5 x6 = 2b2e3.. (f482f.. (8e582.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6 (proof)
Theorem e6222.. : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 x8 x9 : ι → ι → ο . 8e582.. x0 x2 x4 x6 x8 = 8e582.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x8 x10 x11 = x9 x10 x11) (proof)
Param iff : οοο
Known 62ef7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0iff (x1 x3 x4) (x2 x3 x4))d2155.. x0 x1 = d2155.. x0 x2
Theorem 2fe9f.. : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 x7 x8 : ι → ι → ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x1 x9 x10 = x2 x9 x10)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 x9 x10 = x4 x9 x10)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x5 x9 x10) (x6 x9 x10))(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x7 x9 x10) (x8 x9 x10))8e582.. x0 x1 x3 x5 x7 = 8e582.. x0 x2 x4 x6 x8 (proof)
Definition 74b16.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 x6 : ι → ι → ο . x1 (8e582.. x2 x3 x4 x5 x6))x1 x0
Theorem 1058f.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 x4 : ι → ι → ο . 74b16.. (8e582.. x0 x1 x2 x3 x4) (proof)
Theorem 84da4.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . 74b16.. (8e582.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem 55142.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . 74b16.. (8e582.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0 (proof)
Known iff_refl : ∀ x0 : ο . iff x0 x0
Theorem 7edfd.. : ∀ x0 . 74b16.. x0x0 = 8e582.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) (proof)
Definition 9d885.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 930cc.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ι → ο . (∀ x10 . prim1 x10 x1∀ x11 . prim1 x11 x1iff (x5 x10 x11) (x9 x10 x11))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)9d885.. (8e582.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 3b083.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem e7406.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ι → ο . (∀ x10 . prim1 x10 x1∀ x11 . prim1 x11 x1iff (x5 x10 x11) (x9 x10 x11))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)3b083.. (8e582.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Param 1216a.. : ι(ιο) → ι
Definition 9f84a.. := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι → ο . λ x4 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (d2155.. x0 x3) (1216a.. x0 x4)))))
Theorem 1cc79.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = 9f84a.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 40dbf.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . x0 = f482f.. (9f84a.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 3f319.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = 9f84a.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem e7638.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (9f84a.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem 9b51e.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = 9f84a.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem 08625.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (9f84a.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem 5546a.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = 9f84a.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x4 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 x7 (proof)
Theorem fb2a2.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = 2b2e3.. (f482f.. (9f84a.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Param decode_p : ιιο
Known 931fe.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0decode_p (1216a.. x0 x1) x2 = x1 x2
Theorem a65e1.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = 9f84a.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 (proof)
Theorem cdfe8.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0x4 x5 = decode_p (f482f.. (9f84a.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (proof)
Theorem 3d485.. : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι → ο . ∀ x8 x9 : ι → ο . 9f84a.. x0 x2 x4 x6 x8 = 9f84a.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10) (proof)
Known ee7ef.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . prim1 x3 x0iff (x1 x3) (x2 x3))1216a.. x0 x1 = 1216a.. x0 x2
Theorem 813a6.. : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι → ο . ∀ x7 x8 : ι → ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x1 x9 x10 = x2 x9 x10)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 x9 x10 = x4 x9 x10)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x5 x9 x10) (x6 x9 x10))(∀ x9 . prim1 x9 x0iff (x7 x9) (x8 x9))9f84a.. x0 x1 x3 x5 x7 = 9f84a.. x0 x2 x4 x6 x8 (proof)
Definition 430d6.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι → ο . ∀ x6 : ι → ο . x1 (9f84a.. x2 x3 x4 x5 x6))x1 x0
Theorem e4e04.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 430d6.. (9f84a.. x0 x1 x2 x3 x4) (proof)
Theorem 81905.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 430d6.. (9f84a.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem 9407e.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 430d6.. (9f84a.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0 (proof)
Theorem f6d57.. : ∀ x0 . 430d6.. x0x0 = 9f84a.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) (proof)
Definition 87e55.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem e3d85.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)87e55.. (9f84a.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition fc4dd.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem cf9f4.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)(ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)fc4dd.. (9f84a.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition a599b.. := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι → ο . λ x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (d2155.. x0 x3) x4))))
Theorem 4f172.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = a599b.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 9e865.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x0 = f482f.. (a599b.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 5b912.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = a599b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 55b3b.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (a599b.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem cd879.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = a599b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem a8a71.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (a599b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem d50a8.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = a599b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x4 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 x7 (proof)
Theorem 9593f.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = 2b2e3.. (f482f.. (a599b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Theorem 32da5.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = a599b.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 33194.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x4 = f482f.. (a599b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 81909.. : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι → ο . ∀ x8 x9 . a599b.. x0 x2 x4 x6 x8 = a599b.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11)) (x8 = x9) (proof)
Theorem 77b5c.. : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι → ο . ∀ x7 . (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x1 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 x8 x9 = x4 x8 x9)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0iff (x5 x8 x9) (x6 x8 x9))a599b.. x0 x1 x3 x5 x7 = a599b.. x0 x2 x4 x6 x7 (proof)
Definition b089b.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι → ο . ∀ x6 . prim1 x6 x2x1 (a599b.. x2 x3 x4 x5 x6))x1 x0
Theorem 1905b.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι → ο . ∀ x4 . prim1 x4 x0b089b.. (a599b.. x0 x1 x2 x3 x4) (proof)
Theorem a923f.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . b089b.. (a599b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem 6fd41.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . b089b.. (a599b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0 (proof)
Theorem b737f.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . b089b.. (a599b.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem 84780.. : ∀ x0 . b089b.. x0x0 = a599b.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition c1934.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)ι → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem b7c2b.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)ι → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)c1934.. (a599b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition e925d.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)ι → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 4d242.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)e925d.. (a599b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)