Search for blocks/addresses/...

Proofgold Asset

asset id
c1d011351b1bf1dc4b75f9004156f3c3e1134bf201863021b1e95a04beb67884
asset hash
a7b868a0075a72f6dcd0343c3ce9cabce6842a4be2a465ab6f22b429a5f7b6d7
bday / block
4892
tx
91633..
preasset
doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Param UPairUPair : ιιι
Definition SingSing := λ x0 . UPair x0 x0
Known SingISingI : ∀ x0 . x0Sing x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem 8e626.. : ∀ x0 . Sing x0 = UPair x0 x0 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem Sing_invSing_inv : ∀ x0 x1 . Sing x0 = x1and (x0x1) (∀ x2 . x2x1x2 = x0) (proof)
Definition KPair_alt7 := λ x0 x1 . UPair (UPair x0 x1) (Sing x0)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem 758c1.. : ∀ x0 x1 x2 x3 . KPair_alt7 x0 x1 = KPair_alt7 x2 x3x0 = x2 (proof)
Theorem f3ff4.. : ∀ x0 x1 x2 x3 . KPair_alt7 x0 x1 = KPair_alt7 x2 x3x1 = x3 (proof)
Theorem 40621.. : ∀ x0 x1 x2 x3 . KPair_alt7 x0 x1 = KPair_alt7 x2 x3and (x0 = x2) (x1 = x3) (proof)
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Definition ccad8.. := λ x0 x1 . ∀ x2 : ο . (∀ x3 . and (and (∀ x4 . x4x0∀ x5 : ο . (∀ x6 . and (x6x1) (KPair_alt7 x4 x6x3)x5)x5) (∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (KPair_alt7 x6 x4x3)x5)x5)) (∀ x4 x5 x6 x7 . KPair_alt7 x4 x5x3KPair_alt7 x6 x7x3iff (x4 = x6) (x5 = x7))x2)x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Theorem a138b.. : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2ccad8.. x0 x1 (proof)
Known Eps_i_axEps_i_ax : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (prim0 x0)
Theorem 536c8.. : ∀ x0 x1 . ccad8.. x0 x1∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2 (proof)
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4 (proof)
Known and4Eand4E : ∀ x0 x1 x2 x3 : ο . and (and (and x0 x1) x2) x3∀ x4 : ο . (x0x1x2x3x4)x4
Theorem and5Eand5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4∀ x5 : ο . (x0x1x2x3x4x5)x5 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known or4I1or4I1 : ∀ x0 x1 x2 x3 : ο . x0or (or (or x0 x1) x2) x3
Theorem or5I1or5I1 : ∀ x0 x1 x2 x3 x4 : ο . x0or (or (or (or x0 x1) x2) x3) x4 (proof)
Known or4I2or4I2 : ∀ x0 x1 x2 x3 : ο . x1or (or (or x0 x1) x2) x3
Theorem or5I2or5I2 : ∀ x0 x1 x2 x3 x4 : ο . x1or (or (or (or x0 x1) x2) x3) x4 (proof)
Known or4I3or4I3 : ∀ x0 x1 x2 x3 : ο . x2or (or (or x0 x1) x2) x3
Theorem or5I3or5I3 : ∀ x0 x1 x2 x3 x4 : ο . x2or (or (or (or x0 x1) x2) x3) x4 (proof)
Known or4I4or4I4 : ∀ x0 x1 x2 x3 : ο . x3or (or (or x0 x1) x2) x3
Theorem or5I4or5I4 : ∀ x0 x1 x2 x3 x4 : ο . x3or (or (or (or x0 x1) x2) x3) x4 (proof)
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem or5I5or5I5 : ∀ x0 x1 x2 x3 x4 : ο . x4or (or (or (or x0 x1) x2) x3) x4 (proof)
Known or4Eor4E : ∀ x0 x1 x2 x3 : ο . or (or (or x0 x1) x2) x3∀ x4 : ο . (x0x4)(x1x4)(x2x4)(x3x4)x4
Theorem or5Eor5E : ∀ x0 x1 x2 x3 x4 : ο . or (or (or (or x0 x1) x2) x3) x4∀ x5 : ο . (x0x5)(x1x5)(x2x5)(x3x5)(x4x5)x5 (proof)
Theorem and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5 (proof)
Theorem and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6 (proof)
Theorem and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem and7Eand7E : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6∀ x7 : ο . (x0x1x2x3x4x5x6x7)x7 (proof)