Search for blocks/addresses/...
Proofgold Asset
asset id
607c67699101ddcd4e70d1f9972e0d637bc90ace1da2c96825e69987f63484f0
asset hash
c25223dc2980962937339a03e98d3b7a56b597bf05475989244650c4cd4345c1
bday / block
15396
tx
68efb..
preasset
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
nat_13
nat_13
:
nat_p
13
Theorem
d209c..
:
0
∈
14
(proof)
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
cc8e9..
:
0
∈
13
Theorem
df543..
:
1
∈
14
(proof)
Known
ab386..
:
1
∈
13
Theorem
12aa9..
:
2
∈
14
(proof)
Known
a582b..
:
2
∈
13
Theorem
19652..
:
3
∈
14
(proof)
Known
c03b3..
:
3
∈
13
Theorem
48239..
:
4
∈
14
(proof)
Known
39abb..
:
4
∈
13
Theorem
37ac1..
:
5
∈
14
(proof)
Known
88508..
:
5
∈
13
Theorem
21515..
:
6
∈
14
(proof)
Known
827a1..
:
6
∈
13
Theorem
b0eb6..
:
7
∈
14
(proof)
Known
4039c..
:
7
∈
13
Theorem
77742..
:
8
∈
14
(proof)
Known
17545..
:
8
∈
13
Theorem
bfb05..
:
9
∈
14
(proof)
Known
e5d7b..
:
9
∈
13
Theorem
5c550..
:
10
∈
14
(proof)
Known
74a33..
:
10
∈
13
Theorem
63273..
:
11
∈
14
(proof)
Known
925e4..
:
11
∈
13
Theorem
d80fe..
:
12
∈
14
(proof)
Known
f6a92..
:
12
∈
13
Theorem
3ef99..
:
13
∈
14
(proof)
Known
nat_14
nat_14
:
nat_p
14
Theorem
2708c..
:
0
∈
15
(proof)
Theorem
26f84..
:
1
∈
15
(proof)
Theorem
ba15b..
:
2
∈
15
(proof)
Theorem
88998..
:
3
∈
15
(proof)
Theorem
78026..
:
4
∈
15
(proof)
Theorem
144e3..
:
5
∈
15
(proof)
Theorem
7b7a1..
:
6
∈
15
(proof)
Theorem
c208d..
:
7
∈
15
(proof)
Theorem
39ad4..
:
8
∈
15
(proof)
Theorem
099a7..
:
9
∈
15
(proof)
Theorem
f7113..
:
10
∈
15
(proof)
Theorem
9c224..
:
11
∈
15
(proof)
Theorem
ce1d0..
:
12
∈
15
(proof)
Theorem
53185..
:
13
∈
15
(proof)
Theorem
2e90c..
:
14
∈
15
(proof)
Known
nat_15
nat_15
:
nat_p
15
Theorem
2c104..
:
0
∈
16
(proof)
Theorem
6ec80..
:
1
∈
16
(proof)
Theorem
b34ab..
:
2
∈
16
(proof)
Theorem
f312e..
:
3
∈
16
(proof)
Theorem
add3d..
:
4
∈
16
(proof)
Theorem
fe610..
:
5
∈
16
(proof)
Theorem
6d5be..
:
6
∈
16
(proof)
Theorem
64265..
:
7
∈
16
(proof)
Theorem
98f71..
:
8
∈
16
(proof)
Theorem
fdaf0..
:
9
∈
16
(proof)
Theorem
662c8..
:
10
∈
16
(proof)
Theorem
2039c..
:
11
∈
16
(proof)
Theorem
be924..
:
12
∈
16
(proof)
Theorem
e0b58..
:
13
∈
16
(proof)
Theorem
d4076..
:
14
∈
16
(proof)
Theorem
0e6a7..
:
15
∈
16
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
22701..
:
add_nat
16
13
=
29
Theorem
b70e6..
:
add_nat
16
14
=
30
(proof)
Theorem
d9ae8..
:
add_nat
16
15
=
31
(proof)
Theorem
35002..
:
add_nat
16
16
=
32
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
1521b..
:
add_nat
8
8
=
16
Known
mul_add_nat_distrL
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_8
nat_8
:
nat_p
8
Known
af7b1..
:
mul_nat
2
8
=
16
Theorem
12f85..
:
mul_nat
2
16
=
32
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
exp_nat
exp_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_nat
x0
)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
nat_4
nat_4
:
nat_p
4
Known
db1de..
:
exp_nat
2
4
=
16
Theorem
e089c..
:
exp_nat
2
5
=
32
(proof)
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Known
nat_5
nat_5
:
nat_p
5
Theorem
1f846..
:
nat_p
32
(proof)
Known
d9442..
:
∀ x0 .
nat_p
x0
⟶
ordsucc
(
exp_nat
2
(
ordsucc
x0
)
)
∈
exp_nat
2
(
ordsucc
(
ordsucc
x0
)
)
Known
nat_3
nat_3
:
nat_p
3
Theorem
8ad73..
:
17
∈
32
(proof)