Search for blocks/addresses/...
Proofgold Asset
asset id
5c921fb9af84d38d99c2dcf46ab4794900b0fa84cebeb0f16ea892afe0a31341
asset hash
c5aac70bc944185a3a2fed11016b9f20ed2893d95677203470d7326318a91141
bday / block
18246
tx
e229e..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
Church13_p
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
TwoRamseyGraph_3_5_Church13
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
TwoRamseyGraph_3_5_13
:=
λ x0 x1 .
∀ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x2
⟶
Church13_p
x3
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
x1
=
x3
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
TwoRamseyGraph_3_5_Church13
x2
x3
=
λ x5 x6 .
x5
Known
3ed86..
:
∀ x0 .
atleastp
u5
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
(
x2
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
x1
)
⟶
x1
Known
783ed..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x2
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
x1
)
⟶
x1
Known
4a8a6..
:
∀ x0 x1 x2 x3 x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
Church13_p
x2
⟶
Church13_p
x3
⟶
Church13_p
x4
⟶
(
x0
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x0
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x1
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x2
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x3
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x4
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x1
x2
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x1
x3
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x1
x4
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x2
x3
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x2
x4
=
λ x6 x7 .
x7
)
⟶
(
TwoRamseyGraph_3_5_Church13
x3
x4
=
λ x6 x7 .
x7
)
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
cd49f..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
or
(
TwoRamseyGraph_3_5_Church13
x0
x1
=
λ x3 x4 .
x3
)
(
TwoRamseyGraph_3_5_Church13
x0
x1
=
λ x3 x4 .
x4
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
d7c49..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
x0
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
=
x1
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
x0
=
x1
Theorem
cedc9..
:
∀ x0 .
x0
⊆
u13
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_5_13
x1
x2
)
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
09b0c..
:
∀ x0 x1 .
TwoRamseyGraph_3_5_13
x0
x1
⟶
TwoRamseyGraph_3_5_13
x1
x0
Known
0ff84..
:
∀ x0 .
x0
⊆
u13
⟶
atleastp
u3
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
TwoRamseyGraph_3_5_13
x1
x2
)
Theorem
not_TwoRamseyProp_atleast_3_5_13
:
not
(
TwoRamseyProp_atleastp
3
5
13
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
not_TwoRamseyProp_3_5_13
not_TwoRamseyProp_3_5_13
:
not
(
TwoRamseyProp
3
5
13
)
(proof)