Search for blocks/addresses/...
Proofgold Asset
asset id
c68f1d30021696fbe4339587bf40fb54af0cde45e98f201beb0e9f06af88feb9
asset hash
dae7b84d3a6128cd8f778e330c8c61444f73115e012993d5ea010adcf209a577
bday / block
39085
tx
7b926..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
92a6c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
d1f25..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
9f2b5..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f55c6..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
79b8d..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2e358..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
91ad9..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
e4d70..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
07080..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
f3db1..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
43d0f..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
0118b..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
ac9f0..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
50e24..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
d1f25..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
9f2b5..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
f55c6..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
79b8d..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
2e358..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
91ad9..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
e4d70..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
07080..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
f3db1..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
43d0f..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
0118b..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
ac9f0..
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
x2
)
⟶
x2
Known
fe87d..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
92a6c..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
∀ x15 : ο .
(
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
∀ x25 .
x25
∈
x0
⟶
∀ x26 .
x26
∈
x0
⟶
9f2b5..
x2
x16
x3
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
⟶
x15
)
⟶
(
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
∀ x25 .
x25
∈
x0
⟶
∀ x26 .
x26
∈
x0
⟶
9f2b5..
x2
x16
x17
x18
x19
x20
x21
x22
x23
x24
x3
x25
x26
⟶
x15
)
⟶
(
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
∀ x25 .
x25
∈
x0
⟶
∀ x26 .
x26
∈
x0
⟶
f3db1..
x2
x16
x17
x18
x19
x20
x21
x3
x22
x23
x24
x25
x26
⟶
x15
)
⟶
x15
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Theorem
996d2..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
⊆
setminus
x0
(
Sing
x2
)
⟶
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
∀ x9 .
x9
∈
x3
⟶
∀ x10 .
x10
∈
x3
⟶
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
∀ x13 .
x13
∈
x3
⟶
∀ x14 .
x14
∈
x3
⟶
92a6c..
x1
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
50e24..
x0
x1
(proof)