Search for blocks/addresses/...
Proofgold Asset
asset id
c72c7d8ab3731157d69d55ae1616c3a05301773e024e7b12c84438315e4535b6
asset hash
51c84f8fe963b7dfe83701cfcbff2c04b2b91684ebe9f749d65c7bd5deb89939
bday / block
2840
tx
c9490..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
2c81e..
:=
λ x0 .
λ x1 x2 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
1216a..
x0
x1
)
(
1216a..
x0
x2
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
Theorem
cd612..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
x0
=
2c81e..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
bafbc..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
x0
=
f482f..
(
2c81e..
x0
x1
x2
)
4a7ef..
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
c2bca..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
46d9c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
x0
=
2c81e..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
64120..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
decode_p
(
f482f..
(
2c81e..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Known
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Theorem
8ef96..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
x0
=
2c81e..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
bef21..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
decode_p
(
f482f..
(
2c81e..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
348e6..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι → ο
.
2c81e..
x0
x2
x4
=
2c81e..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
ed007..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
2c81e..
x0
x1
x3
=
2c81e..
x0
x2
x4
(proof)
Definition
3d9b3..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι → ο
.
x1
(
2c81e..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
abc60..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
3d9b3..
(
2c81e..
x0
x1
x2
)
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
fc35f..
:
∀ x0 .
3d9b3..
x0
⟶
x0
=
2c81e..
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
ec96a..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
d859a..
:
∀ x0 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι → ο
.
(
∀ x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
ec96a..
(
2c81e..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
04a04..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
4dbf2..
:
∀ x0 :
ι →
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι → ο
.
(
∀ x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
04a04..
(
2c81e..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
5f5a0..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
1216a..
x0
x1
)
x2
)
)
Theorem
e81f9..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
∀ x3 .
x0
=
5f5a0..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
47994..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x0
=
f482f..
(
5f5a0..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
06fa1..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
∀ x3 .
x0
=
5f5a0..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
32b36..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 x3 .
prim1
x3
x0
⟶
x1
x3
=
decode_p
(
f482f..
(
5f5a0..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
04553..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
∀ x3 .
x0
=
5f5a0..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
d7c95..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
=
f482f..
(
5f5a0..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
87020..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 x5 .
5f5a0..
x0
x2
x4
=
5f5a0..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
x4
=
x5
)
(proof)
Theorem
96513..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
∀ x3 .
(
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x4
)
(
x2
x4
)
)
⟶
5f5a0..
x0
x1
x3
=
5f5a0..
x0
x2
x3
(proof)
Definition
b0e4a..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x2
⟶
x1
(
5f5a0..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
5c907..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
b0e4a..
(
5f5a0..
x0
x1
x2
)
(proof)
Theorem
d2c56..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
b0e4a..
(
5f5a0..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
75fde..
:
∀ x0 .
b0e4a..
x0
⟶
x0
=
5f5a0..
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
42c37..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
ad064..
:
∀ x0 :
ι →
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ο
.
∀ x3 .
(
∀ x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
42c37..
(
5f5a0..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
b6337..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
c4dd8..
:
∀ x0 :
ι →
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ο
.
∀ x3 .
(
∀ x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
b6337..
(
5f5a0..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
59c41..
:=
λ x0 x1 x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
x1
x2
)
)
Theorem
6cc5b..
:
∀ x0 x1 x2 x3 .
x0
=
59c41..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
ced17..
:
∀ x0 x1 x2 .
x0
=
f482f..
(
59c41..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
4d620..
:
∀ x0 x1 x2 x3 .
x0
=
59c41..
x1
x2
x3
⟶
x2
=
f482f..
x0
(
4ae4a..
4a7ef..
)
(proof)
Theorem
b8922..
:
∀ x0 x1 x2 .
x1
=
f482f..
(
59c41..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
(proof)
Theorem
40a41..
:
∀ x0 x1 x2 x3 .
x0
=
59c41..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
5a5f5..
:
∀ x0 x1 x2 .
x2
=
f482f..
(
59c41..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
67a86..
:
∀ x0 x1 x2 x3 x4 x5 .
59c41..
x0
x2
x4
=
59c41..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
x2
=
x3
)
)
(
x4
=
x5
)
(proof)
Definition
5c3a8..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
prim1
x3
x2
⟶
∀ x4 .
prim1
x4
x2
⟶
x1
(
59c41..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
b14a4..
:
∀ x0 x1 .
prim1
x1
x0
⟶
∀ x2 .
prim1
x2
x0
⟶
5c3a8..
(
59c41..
x0
x1
x2
)
(proof)
Theorem
13449..
:
∀ x0 x1 x2 .
5c3a8..
(
59c41..
x0
x1
x2
)
⟶
prim1
x1
x0
(proof)
Theorem
b7feb..
:
∀ x0 x1 x2 .
5c3a8..
(
59c41..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
24ae7..
:
∀ x0 .
5c3a8..
x0
⟶
x0
=
59c41..
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
a7889..
:=
λ x0 .
λ x1 :
ι →
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
b27b9..
:
∀ x0 :
ι →
ι →
ι → ι
.
∀ x1 x2 x3 .
a7889..
(
59c41..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
a35ef..
:=
λ x0 .
λ x1 :
ι →
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
17ee4..
:
∀ x0 :
ι →
ι →
ι → ο
.
∀ x1 x2 x3 .
a35ef..
(
59c41..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)