Search for blocks/addresses/...
Proofgold Asset
asset id
c77cfbecaa2e2e4fe8d1804fb3e1cd3662f0c31cc49509bdeb09d3d7986cc495
asset hash
606b301503dfa012d269491a17dc06b2c21bd14eec73c2659f924f0b63ed8a48
bday / block
4982
tx
b74a2..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
equip
equip
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_5
nat_5
:
nat_p
5
Param
ordinal
ordinal
:
ι
→
ο
Known
f8b84..
:
∀ x0 .
equip
3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
∈
x3
⟶
x3
∈
x4
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 :
ι → ο
.
x6
x2
⟶
x6
x3
⟶
x6
x4
⟶
x6
x5
)
⟶
x1
)
⟶
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
neq_4_1
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
4
=
3
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
3
=
2
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
neq_4_0
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Known
neq_3_1
neq_3_1
:
3
=
1
⟶
∀ x0 : ο .
x0
Known
neq_3_0
neq_3_0
:
3
=
0
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
or5E
or5E
:
∀ x0 x1 x2 x3 x4 : ο .
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x5
)
⟶
(
x1
⟶
x5
)
⟶
(
x2
⟶
x5
)
⟶
(
x3
⟶
x5
)
⟶
(
x4
⟶
x5
)
⟶
x5
Known
or5I5
or5I5
:
∀ x0 x1 x2 x3 x4 : ο .
x4
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
or5I4
or5I4
:
∀ x0 x1 x2 x3 x4 : ο .
x3
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
or5I3
or5I3
:
∀ x0 x1 x2 x3 x4 : ο .
x2
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
or5I2
or5I2
:
∀ x0 x1 x2 x3 x4 : ο .
x1
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
or5I1
or5I1
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Theorem
e6ef8..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ο
.
(
∀ x2 : ο .
(
(
∀ x3 x4 .
x1
x3
x4
⟶
x1
x4
x3
)
⟶
x1
0
1
⟶
x1
1
2
⟶
x1
2
3
⟶
x1
3
4
⟶
x1
4
0
⟶
not
(
x1
0
2
)
⟶
not
(
x1
0
3
)
⟶
not
(
x1
1
3
)
⟶
not
(
x1
1
4
)
⟶
not
(
x1
2
4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
cases_5
cases_5
:
∀ x0 .
x0
∈
5
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Theorem
not_TwoRamseyProp_3_3_5
not_TwoRamseyProp_3_3_5
:
not
(
TwoRamseyProp
3
3
5
)
(proof)