Search for blocks/addresses/...
Proofgold Asset
asset id
6fdf1e632dc6b5229260ebdaf6da12524309b843db6c8068c6b28f086096b898
asset hash
c86e5d0c11fd587d1e4113df8e289884e184dca7e9b384357c39f5034b37ab65
bday / block
29812
tx
7fa5a..
preasset
doc published by
PrQUS..
Param
In_rec_i
In_rec_i
:
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
→
ι
Definition
famunion
famunion
:=
λ x0 .
λ x1 :
ι → ι
.
prim3
(
prim5
x0
x1
)
Definition
V_
:=
In_rec_i
(
λ x0 .
λ x1 :
ι → ι
.
famunion
x0
(
λ x2 .
prim4
(
x1
x2
)
)
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
In_rec_i_eq
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
famunionE
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
∈
x1
x4
)
⟶
x3
)
⟶
x3
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Theorem
V_eq
:
∀ x0 .
V_
x0
=
famunion
x0
(
λ x2 .
prim4
(
V_
x2
)
)
(proof)
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Theorem
V_I
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x0
⊆
V_
x1
⟶
x0
∈
V_
x2
(proof)
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Theorem
V_E
:
∀ x0 x1 .
x0
∈
V_
x1
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
x1
⟶
x0
⊆
V_
x3
⟶
x2
)
⟶
x2
(proof)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
V_Subq
:
∀ x0 .
x0
⊆
V_
x0
(proof)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
V_Subq_2
:
∀ x0 x1 .
x0
⊆
V_
x1
⟶
V_
x0
⊆
V_
x1
(proof)
Theorem
V_In
:
∀ x0 x1 .
x0
∈
V_
x1
⟶
V_
x0
∈
V_
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
V_In_or_Subq
:
∀ x0 x1 .
or
(
x0
∈
V_
x1
)
(
V_
x1
⊆
V_
x0
)
(proof)
Theorem
V_In_or_Subq_2
:
∀ x0 x1 .
or
(
V_
x0
∈
V_
x1
)
(
V_
x1
⊆
V_
x0
)
(proof)
Definition
famunion_closed
famunion_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
famunion
x1
x2
∈
x0
Definition
V_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
V_
x1
∈
x0
Definition
Union_closed
Union_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Definition
Repl_closed
Repl_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Theorem
Union_Repl_famunion_closed
Union_Repl_famunion_closed
:
∀ x0 .
Union_closed
x0
⟶
Repl_closed
x0
⟶
famunion_closed
x0
(proof)
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Param
ZF_closed
ZF_closed
:
ι
→
ο
Definition
Power_closed
Power_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Known
ZF_closed_E
ZF_closed_E
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 : ο .
(
Union_closed
x0
⟶
Power_closed
x0
⟶
Repl_closed
x0
⟶
x1
)
⟶
x1
Theorem
V_U_In
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
V_closed
x0
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Known
or3E
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Known
ordinal_trichotomy_or
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
x0
∈
x1
)
(
x0
=
x1
)
)
(
x1
∈
x0
)
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Param
ReplSep
ReplSep
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Known
9248b..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
not
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x5
∈
x3
)
⟶
x4
)
⟶
x4
)
)
⟶
x2
)
⟶
x2
Known
ReplSepI
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
Known
ReplSepE_impred
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
TarskiA_bij_ord
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
⊆
x0
⟶
nIn
x1
x0
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
(
Sep
x0
ordinal
)
x1
x3
⟶
x2
)
⟶
x2
(proof)
Known
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Known
UnivOf_TransSet
UnivOf_TransSet
:
∀ x0 .
TransSet
(
prim6
x0
)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
bij_comp
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Theorem
TarskiA
:
∀ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
and
(
x0
∈
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
⊆
x3
⟶
x4
∈
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x2
)
(
∀ x6 .
x6
⊆
x3
⟶
x6
∈
x5
)
⟶
x4
)
⟶
x4
)
)
(
∀ x3 .
x3
⊆
x2
⟶
or
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
bij
x3
x2
x5
⟶
x4
)
⟶
x4
)
(
x3
∈
x2
)
)
⟶
x1
)
⟶
x1
(proof)