Search for blocks/addresses/...
Proofgold Asset
asset id
062793aae8070d2549c821c2882a1425da7f4fc82f7322dee023620e1195171d
asset hash
cbd55e98f1926969be44ad4069775e972448894b1989c41830c3df4d36ee649e
bday / block
35483
tx
6d763..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
62523..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x3
x5
)
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
fba9e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
62523..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
a5b26..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
fba9e..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
f8709..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
182cc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
84d5a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
182cc..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2de86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
3819d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
fd1bb..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
3819d..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
ba720..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
6ca1f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
ba720..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
0b765..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
6ca1f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
1b79b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
3819d..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
16c0f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
3a674..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
cc0ce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
36d58..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d03a7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
36d58..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
28532..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
ba720..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
2bd9d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
28532..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
3109c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
7f9b0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
3109c..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2b028..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
9ab39..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
2b028..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
2319a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
6d3ff..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2319a..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
d2827..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
36d58..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2cfca..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
182cc..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
796c4..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d7cce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
796c4..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2f869..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
x0
x3
x4
⟶
x5
)
⟶
x5
Definition
87c36..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
2f869..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
not
(
x0
x3
x5
)
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
f201d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
not
(
x0
x2
x6
)
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
81638..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f201d..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
0aba1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
81638..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
cb670..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
a5b26..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
5a3b5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
2f869..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
not
(
x0
x3
x5
)
⟶
not
(
x0
x4
x5
)
⟶
x6
)
⟶
x6
Definition
455db..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
5a3b5..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
not
(
x0
x2
x6
)
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
70d65..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
455db..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
83a9f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
70d65..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
x0
x5
x8
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
6648a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
df271..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
279d8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2158f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
836ee..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
725c8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
836ee..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
50d07..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
836ee..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
02262..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
x0
x5
x8
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
14240..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
81638..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
x0
x6
x8
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
67161..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
81638..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
x0
x6
x8
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
38251..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
not
(
x0
x2
x6
)
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
e7595..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
38251..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
3dc22..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
e7595..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
x0
x5
x8
⟶
x0
x6
x8
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
7b2a6..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
x0
x6
x8
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
5d19f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
e7595..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
x0
x7
x8
⟶
x9
)
⟶
x9
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
aa8eb..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
a5b26..
x2
x4
x5
x6
x7
x8
x9
x10
⟶
∀ x11 : ο .
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x11
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x11
)
⟶
x11
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
f0b7b..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
a5b26..
x2
x4
x5
x6
x7
x8
x9
x10
⟶
∀ x11 : ο .
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
84d5a..
x2
x12
x13
x14
x3
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
fd1bb..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
0b765..
x2
x12
x13
x14
x15
x16
x17
x3
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
1b79b..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
3a674..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
cc0ce..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
d03a7..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
2bd9d..
x2
x12
x13
x14
x15
x16
x17
x3
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
7f9b0..
x2
x12
x3
x13
x14
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
6d3ff..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
d2827..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
2cfca..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
d7cce..
x2
x3
x12
x13
x14
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
0aba1..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
cb670..
x2
x12
x13
x14
x15
x16
x17
x18
x3
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
83a9f..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
279d8..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
2158f..
x2
x12
x3
x13
x14
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
725c8..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
50d07..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
02262..
x2
x12
x13
x14
x3
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
14240..
x2
x12
x13
x14
x15
x3
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
67161..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
3dc22..
x2
x12
x13
x14
x15
x16
x3
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
7b2a6..
x2
x12
x13
x3
x14
x15
x16
x17
x18
⟶
x11
)
⟶
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
5d19f..
x2
x12
x13
x14
x3
x15
x16
x17
x18
⟶
x11
)
⟶
x11
(proof)