Search for blocks/addresses/...
Proofgold Asset
asset id
cbe5627da5033fdf03b672dfea4139df2ef8a68626db8f1fdc76ec4092d86190
asset hash
801dfdf4585e14daff942a04fdb10d0c10052be983ae9451e3915eb15e9e8bce
bday / block
35123
tx
48295..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
2dbc3..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
∀ x6 .
∀ x7 :
ι →
ι → ο
.
∀ x8 x9 x10 .
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι →
ι →
ι →
ι → ι
.
∀ x13 :
ι →
ι → ι
.
∀ x14 x15 .
∀ x16 :
ι → ο
.
∀ x17 x18 x19 x20 :
ι → ι
.
∀ x21 :
ι →
ι → ο
.
∀ x22 :
ι → ι
.
∀ x23 :
ι → ο
.
∀ x24 :
ι → ι
.
∀ x25 :
ι →
ι → ο
.
∀ x26 :
ι → ο
.
∀ x27 :
ι →
ι → ι
.
∀ x28 x29 :
ι → ι
.
∀ x30 :
ι →
ι → ο
.
∀ x31 :
ι →
ι → ι
.
∀ x32 .
∀ x33 :
ι → ο
.
(
∀ x34 x35 .
x33
x35
⟶
(
x35
=
x34
⟶
False
)
⟶
x33
x34
⟶
False
)
⟶
(
∀ x34 x35 .
x0
x34
x35
⟶
x33
x35
⟶
False
)
⟶
(
∀ x34 .
x33
x34
⟶
(
x34
=
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 .
x0
x34
x35
⟶
x2
x35
(
x1
x36
)
⟶
x33
x36
⟶
False
)
⟶
(
∀ x34 x35 .
x30
x34
(
x31
x34
x35
)
⟶
(
x35
=
x32
⟶
False
)
⟶
(
x30
x34
(
x29
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
(
x0
(
x31
x34
x35
)
x35
⟶
False
)
⟶
(
x35
=
x32
⟶
False
)
⟶
(
x30
x34
(
x29
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 .
x0
x35
x36
⟶
x2
x36
(
x1
x34
)
⟶
(
x2
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x30
x35
x34
⟶
(
x2
x35
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x35
(
x1
x34
)
⟶
(
x30
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x34
x35
⟶
(
x33
x35
⟶
False
)
⟶
(
x0
x34
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x30
(
x29
x34
)
(
x28
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 .
x30
x35
x36
⟶
x30
x36
x34
⟶
(
x30
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x0
x35
x34
⟶
(
x2
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x30
x34
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x34
(
x1
(
x1
x35
)
)
⟶
(
x27
x35
x34
=
x29
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x34
(
x1
(
x1
x35
)
)
⟶
(
x3
x35
x34
=
x28
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x26
x34
⟶
x23
x34
⟶
(
x25
(
x24
x34
)
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x26
x34
⟶
x23
x34
⟶
(
x2
(
x24
x34
)
(
x1
(
x4
x34
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x33
x34
⟶
False
)
⟶
(
x21
(
x22
x34
)
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x33
x34
⟶
False
)
⟶
(
x2
(
x22
x34
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x21
(
x20
x34
)
x34
⟶
False
)
⟶
(
∀ x34 .
(
x2
(
x20
x34
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x33
(
x19
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x2
(
x19
x34
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
(
x33
x34
⟶
False
)
⟶
x33
(
x18
x34
)
⟶
False
)
⟶
(
∀ x34 .
(
x33
x34
⟶
False
)
⟶
(
x2
(
x18
x34
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x23
x34
⟶
(
x33
(
x17
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x23
x34
⟶
(
x2
(
x17
x34
)
(
x1
(
x4
x34
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x33
(
x1
x34
)
⟶
False
)
⟶
(
∀ x34 .
(
x2
(
x5
x34
)
x34
⟶
False
)
⟶
False
)
⟶
(
(
x16
x15
⟶
False
)
⟶
False
)
⟶
(
(
x23
x6
⟶
False
)
⟶
False
)
⟶
(
(
x33
x14
⟶
False
)
⟶
False
)
⟶
(
∀ x34 .
x23
x34
⟶
(
x16
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x35
(
x1
(
x1
x34
)
)
⟶
(
x2
(
x27
x34
x35
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x2
x35
(
x1
(
x1
x34
)
)
⟶
(
x2
(
x3
x34
x35
)
(
x1
x34
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x23
x35
⟶
x2
x34
(
x1
(
x4
x35
)
)
⟶
(
x2
(
x13
x35
x34
)
(
x1
(
x4
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x32
=
x14
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x2
x35
(
x1
(
x1
(
x4
x37
)
)
)
⟶
(
x30
x34
(
x12
x35
x36
x34
x37
)
⟶
False
)
⟶
(
x0
(
x12
x35
x36
x34
x37
)
x35
⟶
False
)
⟶
x3
(
x4
x37
)
x35
=
x36
⟶
(
x36
=
x13
x37
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x2
x35
(
x1
(
x1
(
x4
x37
)
)
)
⟶
(
x7
(
x12
x35
x36
x34
x37
)
x37
⟶
False
)
⟶
(
x0
(
x12
x35
x36
x34
x37
)
x35
⟶
False
)
⟶
x3
(
x4
x37
)
x35
=
x36
⟶
(
x36
=
x13
x37
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x2
x35
(
x1
(
x1
(
x4
x37
)
)
)
⟶
x0
(
x12
x35
x36
x34
x37
)
x35
⟶
x7
(
x12
x35
x36
x34
x37
)
x37
⟶
x30
x34
(
x12
x35
x36
x34
x37
)
⟶
x3
(
x4
x37
)
x35
=
x36
⟶
(
x36
=
x13
x37
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x2
x35
(
x1
(
x1
(
x4
x37
)
)
)
⟶
(
x2
(
x12
x35
x36
x34
x37
)
(
x1
(
x4
x37
)
)
⟶
False
)
⟶
x3
(
x4
x37
)
x35
=
x36
⟶
(
x36
=
x13
x37
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 .
x23
x36
⟶
x2
x34
(
x1
(
x4
x36
)
)
⟶
x2
x35
(
x1
(
x4
x36
)
)
⟶
x35
=
x13
x36
x34
⟶
(
x3
(
x4
x36
)
(
x11
x35
x34
x36
)
=
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x36
=
x13
x37
x34
⟶
x2
x35
(
x1
(
x4
x37
)
)
⟶
x7
x35
x37
⟶
x30
x34
x35
⟶
(
x0
x35
(
x11
x36
x34
x37
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x36
=
x13
x37
x34
⟶
x2
x35
(
x1
(
x4
x37
)
)
⟶
x0
x35
(
x11
x36
x34
x37
)
⟶
(
x30
x34
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 x37 .
x23
x37
⟶
x2
x34
(
x1
(
x4
x37
)
)
⟶
x2
x36
(
x1
(
x4
x37
)
)
⟶
x36
=
x13
x37
x34
⟶
x2
x35
(
x1
(
x4
x37
)
)
⟶
x0
x35
(
x11
x36
x34
x37
)
⟶
(
x7
x35
x37
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 x36 .
x23
x36
⟶
x2
x34
(
x1
(
x4
x36
)
)
⟶
x2
x35
(
x1
(
x4
x36
)
)
⟶
x35
=
x13
x36
x34
⟶
(
x2
(
x11
x35
x34
x36
)
(
x1
(
x1
(
x4
x36
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x33
x35
⟶
x2
x34
(
x1
x35
)
⟶
x21
x34
x35
⟶
False
)
⟶
(
∀ x34 x35 .
x23
x35
⟶
x2
x34
(
x1
(
x4
x35
)
)
⟶
x33
x34
⟶
(
x7
x34
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
(
x33
x35
⟶
False
)
⟶
x2
x34
(
x1
x35
)
⟶
x33
x34
⟶
(
x21
x34
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
(
x33
x35
⟶
False
)
⟶
x2
x34
(
x1
x35
)
⟶
(
x21
x34
x35
⟶
False
)
⟶
x33
x34
⟶
False
)
⟶
(
∀ x34 x35 .
x26
x35
⟶
x23
x35
⟶
x2
x34
(
x1
(
x4
x35
)
)
⟶
x33
x34
⟶
(
x25
x34
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x33
x35
⟶
x2
x34
(
x1
x35
)
⟶
(
x33
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x34 x35 .
x0
x34
x35
⟶
x0
x35
x34
⟶
False
)
⟶
(
x30
x10
(
x13
x9
x10
)
⟶
False
)
⟶
(
(
x30
x10
x8
⟶
False
)
⟶
False
)
⟶
(
(
x7
x8
x9
⟶
False
)
⟶
False
)
⟶
(
(
x2
x8
(
x1
(
x4
x9
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x10
(
x1
(
x4
x9
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x23
x9
⟶
False
)
⟶
False
)
⟶
(
(
x26
x9
⟶
False
)
⟶
False
)
⟶
False
(proof)