Search for blocks/addresses/...

Proofgold Asset

asset id
9583a5bb988fe3a756986a4fe8a224b981b6e8b4a7098ed0f1801c1626d1240f
asset hash
cc33ec8303f15357cfa06323c6208a0411989aca8d30c9c709c5656c8c36eeac
bday / block
36383
tx
5ee1c..
preasset
doc published by PrCmT..
Known ax_mp__ax_1__ax_2__ax_3__df_bi__df_or__df_an__df_ifp__df_3or__df_3an__df_nan__df_xor__df_tru__df_fal__df_had__df_cad__df_ex__df_nf : ∀ x0 : ο . ((∀ x1 x2 : ο . x1(x1x2)x2)(∀ x1 x2 : ο . x1x2x1)(∀ x1 x2 x3 : ο . (x1x2x3)(x1x2)x1x3)(∀ x1 x2 : ο . (wn x1wn x2)x2x1)(∀ x1 x2 : ο . wn ((wb x1 x2wn ((x1x2)wn (x2x1)))wn (wn ((x1x2)wn (x2x1))wb x1 x2)))(∀ x1 x2 : ο . wb (wo x1 x2) (wn x1x2))(∀ x1 x2 : ο . wb (wa x1 x2) (wn (x1wn x2)))(∀ x1 x2 x3 : ο . wb (wif x1 x2 x3) (wo (wa x1 x2) (wa (wn x1) x3)))(∀ x1 x2 x3 : ο . wb (w3o x1 x2 x3) (wo (wo x1 x2) x3))(∀ x1 x2 x3 : ο . wb (w3a x1 x2 x3) (wa (wa x1 x2) x3))(∀ x1 x2 : ο . wb (wnan x1 x2) (wn (wa x1 x2)))(∀ x1 x2 : ο . wb (wxo x1 x2) (wn (wb x1 x2)))wb wtru ((∀ x1 . wceq (cv x1) (cv x1))∀ x1 . wceq (cv x1) (cv x1))wb wfal (wn wtru)(∀ x1 x2 x3 : ο . wb (whad x1 x2 x3) (wxo (wxo x1 x2) x3))(∀ x1 x2 x3 : ο . wb (wcad x1 x2 x3) (wo (wa x1 x2) (wa x3 (wxo x1 x2))))(∀ x1 : ι → ο . wb (wex x1) (wn (∀ x2 . wn (x1 x2))))(∀ x1 : ι → ο . wb (wnf x1) (wex x1∀ x2 . x1 x2))x0)x0
Theorem ax_mpax_mp : ∀ x0 x1 : ο . x0(x0x1)x1 (proof)
Theorem ax_frege1 : ∀ x0 x1 : ο . x0x1x0 (proof)
Theorem ax_frege2 : ∀ x0 x1 x2 : ο . (x0x1x2)(x0x1)x0x2 (proof)
Theorem ax_3 : ∀ x0 x1 : ο . (wn x0wn x1)x1x0 (proof)
Theorem df_bi : ∀ x0 x1 : ο . wn ((wb x0 x1wn ((x0x1)wn (x1x0)))wn (wn ((x0x1)wn (x1x0))wb x0 x1)) (proof)
Theorem df_or : ∀ x0 x1 : ο . wb (wo x0 x1) (wn x0x1) (proof)
Theorem df_an : ∀ x0 x1 : ο . wb (wa x0 x1) (wn (x0wn x1)) (proof)
Theorem df_ifp : ∀ x0 x1 x2 : ο . wb (wif x0 x1 x2) (wo (wa x0 x1) (wa (wn x0) x2)) (proof)
Theorem df_3or : ∀ x0 x1 x2 : ο . wb (w3o x0 x1 x2) (wo (wo x0 x1) x2) (proof)
Theorem df_3an : ∀ x0 x1 x2 : ο . wb (w3a x0 x1 x2) (wa (wa x0 x1) x2) (proof)
Theorem df_nan : ∀ x0 x1 : ο . wb (wnan x0 x1) (wn (wa x0 x1)) (proof)
Theorem df_xor : ∀ x0 x1 : ο . wb (wxo x0 x1) (wn (wb x0 x1)) (proof)
Theorem df_tru : wb wtru ((∀ x0 . wceq (cv x0) (cv x0))∀ x0 . wceq (cv x0) (cv x0)) (proof)
Theorem df_fal : wb wfal (wn wtru) (proof)
Theorem df_had : ∀ x0 x1 x2 : ο . wb (whad x0 x1 x2) (wxo (wxo x0 x1) x2) (proof)
Theorem df_cad : ∀ x0 x1 x2 : ο . wb (wcad x0 x1 x2) (wo (wa x0 x1) (wa x2 (wxo x0 x1))) (proof)
Theorem df_ex : ∀ x0 : ι → ο . wb (wex x0) (wn (∀ x1 . wn (x0 x1))) (proof)
Theorem df_nf : ∀ x0 : ι → ο . wb (wnf x0) (wex x0∀ x1 . x0 x1) (proof)