Search for blocks/addresses/...
Proofgold Asset
asset id
9583a5bb988fe3a756986a4fe8a224b981b6e8b4a7098ed0f1801c1626d1240f
asset hash
cc33ec8303f15357cfa06323c6208a0411989aca8d30c9c709c5656c8c36eeac
bday / block
36383
tx
5ee1c..
preasset
doc published by
PrCmT..
Known
ax_mp__ax_1__ax_2__ax_3__df_bi__df_or__df_an__df_ifp__df_3or__df_3an__df_nan__df_xor__df_tru__df_fal__df_had__df_cad__df_ex__df_nf
:
∀ x0 : ο .
(
(
∀ x1 x2 : ο .
x1
⟶
(
x1
⟶
x2
)
⟶
x2
)
⟶
(
∀ x1 x2 : ο .
x1
⟶
x2
⟶
x1
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
(
x1
⟶
x2
)
⟶
x1
⟶
x3
)
⟶
(
∀ x1 x2 : ο .
(
wn
x1
⟶
wn
x2
)
⟶
x2
⟶
x1
)
⟶
(
∀ x1 x2 : ο .
wn
(
(
wb
x1
x2
⟶
wn
(
(
x1
⟶
x2
)
⟶
wn
(
x2
⟶
x1
)
)
)
⟶
wn
(
wn
(
(
x1
⟶
x2
)
⟶
wn
(
x2
⟶
x1
)
)
⟶
wb
x1
x2
)
)
)
⟶
(
∀ x1 x2 : ο .
wb
(
wo
x1
x2
)
(
wn
x1
⟶
x2
)
)
⟶
(
∀ x1 x2 : ο .
wb
(
wa
x1
x2
)
(
wn
(
x1
⟶
wn
x2
)
)
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
wif
x1
x2
x3
)
(
wo
(
wa
x1
x2
)
(
wa
(
wn
x1
)
x3
)
)
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
w3o
x1
x2
x3
)
(
wo
(
wo
x1
x2
)
x3
)
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
w3a
x1
x2
x3
)
(
wa
(
wa
x1
x2
)
x3
)
)
⟶
(
∀ x1 x2 : ο .
wb
(
wnan
x1
x2
)
(
wn
(
wa
x1
x2
)
)
)
⟶
(
∀ x1 x2 : ο .
wb
(
wxo
x1
x2
)
(
wn
(
wb
x1
x2
)
)
)
⟶
wb
wtru
(
(
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
∀ x1 .
wceq
(
cv
x1
)
(
cv
x1
)
)
⟶
wb
wfal
(
wn
wtru
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
whad
x1
x2
x3
)
(
wxo
(
wxo
x1
x2
)
x3
)
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
wcad
x1
x2
x3
)
(
wo
(
wa
x1
x2
)
(
wa
x3
(
wxo
x1
x2
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wex
x1
)
(
wn
(
∀ x2 .
wn
(
x1
x2
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wnf
x1
)
(
wex
x1
⟶
∀ x2 .
x1
x2
)
)
⟶
x0
)
⟶
x0
Theorem
ax_mp
ax_mp
:
∀ x0 x1 : ο .
x0
⟶
(
x0
⟶
x1
)
⟶
x1
(proof)
Theorem
ax_frege1
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
x0
(proof)
Theorem
ax_frege2
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
(
x0
⟶
x1
)
⟶
x0
⟶
x2
(proof)
Theorem
ax_3
:
∀ x0 x1 : ο .
(
wn
x0
⟶
wn
x1
)
⟶
x1
⟶
x0
(proof)
Theorem
df_bi
:
∀ x0 x1 : ο .
wn
(
(
wb
x0
x1
⟶
wn
(
(
x0
⟶
x1
)
⟶
wn
(
x1
⟶
x0
)
)
)
⟶
wn
(
wn
(
(
x0
⟶
x1
)
⟶
wn
(
x1
⟶
x0
)
)
⟶
wb
x0
x1
)
)
(proof)
Theorem
df_or
:
∀ x0 x1 : ο .
wb
(
wo
x0
x1
)
(
wn
x0
⟶
x1
)
(proof)
Theorem
df_an
:
∀ x0 x1 : ο .
wb
(
wa
x0
x1
)
(
wn
(
x0
⟶
wn
x1
)
)
(proof)
Theorem
df_ifp
:
∀ x0 x1 x2 : ο .
wb
(
wif
x0
x1
x2
)
(
wo
(
wa
x0
x1
)
(
wa
(
wn
x0
)
x2
)
)
(proof)
Theorem
df_3or
:
∀ x0 x1 x2 : ο .
wb
(
w3o
x0
x1
x2
)
(
wo
(
wo
x0
x1
)
x2
)
(proof)
Theorem
df_3an
:
∀ x0 x1 x2 : ο .
wb
(
w3a
x0
x1
x2
)
(
wa
(
wa
x0
x1
)
x2
)
(proof)
Theorem
df_nan
:
∀ x0 x1 : ο .
wb
(
wnan
x0
x1
)
(
wn
(
wa
x0
x1
)
)
(proof)
Theorem
df_xor
:
∀ x0 x1 : ο .
wb
(
wxo
x0
x1
)
(
wn
(
wb
x0
x1
)
)
(proof)
Theorem
df_tru
:
wb
wtru
(
(
∀ x0 .
wceq
(
cv
x0
)
(
cv
x0
)
)
⟶
∀ x0 .
wceq
(
cv
x0
)
(
cv
x0
)
)
(proof)
Theorem
df_fal
:
wb
wfal
(
wn
wtru
)
(proof)
Theorem
df_had
:
∀ x0 x1 x2 : ο .
wb
(
whad
x0
x1
x2
)
(
wxo
(
wxo
x0
x1
)
x2
)
(proof)
Theorem
df_cad
:
∀ x0 x1 x2 : ο .
wb
(
wcad
x0
x1
x2
)
(
wo
(
wa
x0
x1
)
(
wa
x2
(
wxo
x0
x1
)
)
)
(proof)
Theorem
df_ex
:
∀ x0 :
ι → ο
.
wb
(
wex
x0
)
(
wn
(
∀ x1 .
wn
(
x0
x1
)
)
)
(proof)
Theorem
df_nf
:
∀ x0 :
ι → ο
.
wb
(
wnf
x0
)
(
wex
x0
⟶
∀ x1 .
x0
x1
)
(proof)