Search for blocks/addresses/...
Proofgold Asset
asset id
1bd5edca13ef5a88d214538e9e5496aebf9d6e0ee1ce581c81f1b298fa2dd966
asset hash
ce78df0b440e44633e4d75f3301623212e2ee1bdb2379e9817d8a3ddae139b73
bday / block
4882
tx
18c18..
preasset
doc published by
Pr6Pc..
Definition
False
False
:=
∀ x0 : ο .
x0
Theorem
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
(proof)
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Theorem
TrueI
TrueI
:
True
(proof)
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
notI
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
(proof)
Theorem
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
(proof)
Theorem
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
(proof)
Theorem
andER
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
(proof)
Theorem
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
(proof)
Theorem
orE
orE
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
or
x0
x1
⟶
x2
(proof)
Theorem
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
(proof)
Theorem
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
or3I1
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
or3I2
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
or3I3
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
or3E
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
(proof)
Theorem
and4E
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
or4I1
or4I1
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I2
or4I2
:
∀ x0 x1 x2 x3 : ο .
x1
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I3
or4I3
:
∀ x0 x1 x2 x3 : ο .
x2
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I4
or4I4
:
∀ x0 x1 x2 x3 : ο .
x3
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4E
or4E
:
∀ x0 x1 x2 x3 : ο .
or
(
or
(
or
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x4
)
⟶
(
x1
⟶
x4
)
⟶
(
x2
⟶
x4
)
⟶
(
x3
⟶
x4
)
⟶
x4
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Theorem
iffEL
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
(proof)
Theorem
iffER
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
(proof)
Theorem
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
(proof)
Theorem
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
(proof)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Theorem
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
(proof)
Known
prop_ext
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Theorem
pred_ext
pred_ext
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
iff
(
x0
x2
)
(
x1
x2
)
)
⟶
x0
=
x1
(proof)
Theorem
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
(proof)
Theorem
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Theorem
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
(proof)
Theorem
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
(proof)
Theorem
Subq_contra
Subq_contra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
nIn
x2
x1
⟶
nIn
x2
x0
(proof)
Known
EmptyAx
EmptyAx
:
not
(
∀ x0 : ο .
(
∀ x1 .
x1
∈
0
⟶
x0
)
⟶
x0
)
Theorem
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
(proof)
Theorem
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
Empty_Subq_eq
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
(proof)
Theorem
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
(proof)
Known
UnionEq
UnionEq
:
∀ x0 x1 .
iff
(
x1
∈
prim3
x0
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x1
∈
x3
)
(
x3
∈
x0
)
⟶
x2
)
⟶
x2
)
Theorem
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
(proof)
Theorem
UnionE
UnionE
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x1
∈
x3
)
(
x3
∈
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
UnionE_impred
UnionE_impred
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x1
∈
x3
⟶
x3
∈
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
Union_Empty
Union_Empty
:
prim3
0
=
0
(proof)
Known
PowerEq
PowerEq
:
∀ x0 x1 .
iff
(
x1
∈
prim4
x0
)
(
x1
⊆
x0
)
Theorem
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
(proof)
Theorem
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
(proof)
Theorem
Power_Subq
Power_Subq
:
∀ x0 x1 .
x0
⊆
x1
⟶
prim4
x0
⊆
prim4
x1
(proof)
Theorem
Empty_In_Power
Empty_In_Power
:
∀ x0 .
0
∈
prim4
x0
(proof)
Theorem
Self_In_Power
Self_In_Power
:
∀ x0 .
x0
∈
prim4
x0
(proof)
Theorem
Union_Power_Subq
Union_Power_Subq
:
∀ x0 .
prim3
(
prim4
x0
)
⊆
x0
(proof)
Theorem
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
(proof)
Theorem
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
(proof)
Theorem
imp_not_or
imp_not_or
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
or
(
not
x0
)
x1
(proof)
Theorem
not_and_or_demorgan
not_and_or_demorgan
:
∀ x0 x1 : ο .
not
(
and
x0
x1
)
⟶
or
(
not
x0
)
(
not
x1
)
(proof)
Definition
exactly1of2
exactly1of2
:=
λ x0 x1 : ο .
or
(
and
x0
(
not
x1
)
)
(
and
(
not
x0
)
x1
)
Theorem
exactly1of2_I1
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
(proof)
Theorem
exactly1of2_I2
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
(proof)
Theorem
exactly1of2_impI1
exactly1of2_impI1
:
∀ x0 x1 : ο .
(
x0
⟶
not
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
exactly1of2
x0
x1
(proof)
Theorem
exactly1of2_impI2
exactly1of2_impI2
:
∀ x0 x1 : ο .
(
x1
⟶
not
x0
)
⟶
(
not
x1
⟶
x0
)
⟶
exactly1of2
x0
x1
(proof)
Theorem
exactly1of2_E
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
exactly1of2_or
exactly1of2_or
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
or
x0
x1
(proof)
Theorem
exactly1of2_impn12
exactly1of2_impn12
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
x0
⟶
not
x1
(proof)
Theorem
exactly1of2_impn21
exactly1of2_impn21
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
x1
⟶
not
x0
(proof)
Theorem
exactly1of2_nimp12
exactly1of2_nimp12
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
not
x0
⟶
x1
(proof)
Theorem
exactly1of2_nimp21
exactly1of2_nimp21
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
not
x1
⟶
x0
(proof)
Definition
exactly1of3
exactly1of3
:=
λ x0 x1 x2 : ο .
or
(
and
(
exactly1of2
x0
x1
)
(
not
x2
)
)
(
and
(
and
(
not
x0
)
(
not
x1
)
)
x2
)
Theorem
exactly1of3_I1
exactly1of3_I1
:
∀ x0 x1 x2 : ο .
x0
⟶
not
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_I2
exactly1of3_I2
:
∀ x0 x1 x2 : ο .
not
x0
⟶
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_I3
exactly1of3_I3
:
∀ x0 x1 x2 : ο .
not
x0
⟶
not
x1
⟶
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_impI1
exactly1of3_impI1
:
∀ x0 x1 x2 : ο .
(
x0
⟶
not
x1
)
⟶
(
x0
⟶
not
x2
)
⟶
(
x1
⟶
not
x2
)
⟶
(
not
x0
⟶
or
x1
x2
)
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_impI2
exactly1of3_impI2
:
∀ x0 x1 x2 : ο .
(
x1
⟶
not
x0
)
⟶
(
x1
⟶
not
x2
)
⟶
(
x0
⟶
not
x2
)
⟶
(
not
x1
⟶
or
x0
x2
)
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_impI3
exactly1of3_impI3
:
∀ x0 x1 x2 : ο .
(
x2
⟶
not
x0
)
⟶
(
x2
⟶
not
x1
)
⟶
(
x0
⟶
not
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
exactly1of3_E
exactly1of3_E
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
∀ x3 : ο .
(
x0
⟶
not
x1
⟶
not
x2
⟶
x3
)
⟶
(
not
x0
⟶
x1
⟶
not
x2
⟶
x3
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
exactly1of3_or
exactly1of3_or
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
exactly1of3_impn12
exactly1of3_impn12
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x0
⟶
not
x1
(proof)
Theorem
exactly1of3_impn13
exactly1of3_impn13
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x0
⟶
not
x2
(proof)
Theorem
exactly1of3_impn21
exactly1of3_impn21
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x1
⟶
not
x0
(proof)
Theorem
exactly1of3_impn23
exactly1of3_impn23
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x1
⟶
not
x2
(proof)
Theorem
exactly1of3_impn31
exactly1of3_impn31
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x2
⟶
not
x0
(proof)
Theorem
exactly1of3_impn32
exactly1of3_impn32
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
x2
⟶
not
x1
(proof)
Theorem
exactly1of3_nimp1
exactly1of3_nimp1
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x0
⟶
or
x1
x2
(proof)
Theorem
exactly1of3_nimp2
exactly1of3_nimp2
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x1
⟶
or
x0
x2
(proof)
Theorem
exactly1of3_nimp3
exactly1of3_nimp3
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
not
x2
⟶
or
x0
x1
(proof)
Known
ReplEq
ReplEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
x2
∈
prim5
x0
x1
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
)
Theorem
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
(proof)
Theorem
ReplE
ReplE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
Repl_Empty
Repl_Empty
:
∀ x0 :
ι → ι
.
prim5
0
x0
=
0
(proof)
Theorem
ReplEq_ext_sub
ReplEq_ext_sub
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
⊆
prim5
x0
x2
(proof)
Theorem
ReplEq_ext
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
=
prim5
x0
x2
(proof)
Definition
If_i
If_i
:=
λ x0 : ο .
λ x1 x2 .
prim0
(
λ x3 .
or
(
and
x0
(
x3
=
x1
)
)
(
and
(
not
x0
)
(
x3
=
x2
)
)
)
Theorem
If_i_correct
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
(proof)
Theorem
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
(proof)
Theorem
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
(proof)
Theorem
If_i_or
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
(proof)
Theorem
If_i_eta
If_i_eta
:
∀ x0 : ο .
∀ x1 .
If_i
x0
x1
x1
=
x1
(proof)
Definition
UPair
UPair
:=
λ x0 x1 .
{
If_i
(
0
∈
x2
)
x0
x1
|x2 ∈
prim4
(
prim4
0
)
}
Theorem
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
(proof)
Theorem
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
(proof)
Theorem
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
(proof)
Theorem
93b47..
:
∀ x0 x1 .
UPair
x0
x1
⊆
UPair
x1
x0
(proof)
Theorem
UPair_com
UPair_com
:
∀ x0 x1 .
UPair
x0
x1
=
UPair
x1
x0
(proof)
Definition
Sing
Sing
:=
λ x0 .
UPair
x0
x0
Theorem
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
(proof)
Theorem
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
(proof)
Definition
binunion
binunion
:=
λ x0 x1 .
prim3
(
UPair
x0
x1
)
Theorem
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
(proof)
Theorem
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
(proof)
Theorem
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
(proof)
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Theorem
Power_0_Sing_0
Power_0_Sing_0
:
prim4
0
=
Sing
0
(proof)
Theorem
Repl_UPair
Repl_UPair
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
prim5
(
UPair
x1
x2
)
x0
=
UPair
(
x0
x1
)
(
x0
x2
)
(proof)
Theorem
Repl_Sing
Repl_Sing
:
∀ x0 :
ι → ι
.
∀ x1 .
prim5
(
Sing
x1
)
x0
=
Sing
(
x0
x1
)
(proof)
Theorem
ReplEq_ext_sub
ReplEq_ext_sub
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
⊆
prim5
x0
x2
(proof)
Theorem
ReplEq_ext
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
=
prim5
x0
x2
(proof)
Definition
famunion
famunion
:=
λ x0 .
λ x1 :
ι → ι
.
prim3
(
prim5
x0
x1
)
Theorem
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
(proof)
Theorem
famunionE
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
∈
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
UnionEq_famunionId
UnionEq_famunionId
:
∀ x0 .
prim3
x0
=
famunion
x0
(
λ x2 .
x2
)
(proof)
Theorem
ReplEq_famunion_Sing
ReplEq_famunion_Sing
:
∀ x0 .
∀ x1 :
ι → ι
.
prim5
x0
x1
=
famunion
x0
(
λ x3 .
Sing
(
x1
x3
)
)
(proof)
Theorem
Power_Sing
Power_Sing
:
∀ x0 .
prim4
(
Sing
x0
)
=
UPair
0
(
Sing
x0
)
(proof)
Theorem
Power_Sing_0
Power_Sing_0
:
prim4
(
Sing
0
)
=
UPair
0
(
Sing
0
)
(proof)
Definition
Sep
Sep
:=
λ x0 .
λ x1 :
ι → ο
.
If_i
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
{
If_i
(
x1
x2
)
x2
(
prim0
(
λ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
)
)
|x2 ∈
x0
}
0
Theorem
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
(proof)
Theorem
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
(proof)
Theorem
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
(proof)
Theorem
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
(proof)
Theorem
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
(proof)
Theorem
Sep_In_Power
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
∈
prim4
x0
(proof)
Definition
ReplSep
ReplSep
:=
λ x0 .
λ x1 :
ι → ο
.
prim5
(
Sep
x0
x1
)
Theorem
ReplSepI
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
(proof)
Theorem
ReplSepE
ReplSepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
and
(
x5
∈
x0
)
(
x1
x5
)
)
(
x3
=
x2
x5
)
⟶
x4
)
⟶
x4
(proof)
Theorem
ReplSepE_impred
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
(proof)
Definition
ReplSep2
ReplSep2
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι →
ι → ι
.
prim3
{
ReplSep
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
|x4 ∈
x0
}
Theorem
ReplSep2I
ReplSep2I
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
x4
⟶
x2
x4
x5
⟶
x3
x4
x5
∈
ReplSep2
x0
x1
x2
x3
(proof)
Theorem
ReplSep2E_impred
ReplSep2E_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
x4
∈
ReplSep2
x0
x1
x2
x3
⟶
∀ x5 : ο .
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x1
x6
⟶
x2
x6
x7
⟶
x4
=
x3
x6
x7
⟶
x5
)
⟶
x5
(proof)
Theorem
ReplSep2E
ReplSep2E
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 .
x4
∈
ReplSep2
x0
x1
x2
x3
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x1
x6
)
(
and
(
x2
x6
x8
)
(
x4
=
x3
x6
x8
)
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
(proof)
Theorem
binunion_asso
binunion_asso
:
∀ x0 x1 x2 .
binunion
x0
(
binunion
x1
x2
)
=
binunion
(
binunion
x0
x1
)
x2
(proof)
Theorem
binunion_com_Subq
binunion_com_Subq
:
∀ x0 x1 .
binunion
x0
x1
⊆
binunion
x1
x0
(proof)
Theorem
binunion_com
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
(proof)
Theorem
binunion_idl
binunion_idl
:
∀ x0 .
binunion
0
x0
=
x0
(proof)
Theorem
binunion_idr
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
(proof)
Theorem
binunion_idem
binunion_idem
:
∀ x0 .
binunion
x0
x0
=
x0
(proof)
Theorem
binunion_Subq_1
binunion_Subq_1
:
∀ x0 x1 .
x0
⊆
binunion
x0
x1
(proof)
Theorem
binunion_Subq_2
binunion_Subq_2
:
∀ x0 x1 .
x1
⊆
binunion
x0
x1
(proof)
Theorem
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
(proof)
Theorem
Subq_binunion_eq
Subq_binunion_eq
:
∀ x0 x1 .
x0
⊆
x1
=
(
binunion
x0
x1
=
x1
)
(proof)
Theorem
binunion_nIn_I
binunion_nIn_I
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
x1
⟶
nIn
x2
(
binunion
x0
x1
)
(proof)
Theorem
binunion_nIn_E
binunion_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
binunion
x0
x1
)
⟶
and
(
nIn
x2
x0
)
(
nIn
x2
x1
)
(proof)
Definition
binintersect
binintersect
:=
λ x0 x1 .
{x2 ∈
x0
|
x2
∈
x1
}
Theorem
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
(proof)
Theorem
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
(proof)
Theorem
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
(proof)
Theorem
binintersectE2
binintersectE2
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x1
(proof)
Theorem
binintersect_Subq_1
binintersect_Subq_1
:
∀ x0 x1 .
binintersect
x0
x1
⊆
x0
(proof)
Theorem
binintersect_Subq_2
binintersect_Subq_2
:
∀ x0 x1 .
binintersect
x0
x1
⊆
x1
(proof)
Theorem
binintersect_Subq_eq_1
binintersect_Subq_eq_1
:
∀ x0 x1 .
x0
⊆
x1
⟶
binintersect
x0
x1
=
x0
(proof)
Theorem
binintersect_Subq_max
binintersect_Subq_max
:
∀ x0 x1 x2 .
x2
⊆
x0
⟶
x2
⊆
x1
⟶
x2
⊆
binintersect
x0
x1
(proof)
Theorem
binintersect_asso
binintersect_asso
:
∀ x0 x1 x2 .
binintersect
x0
(
binintersect
x1
x2
)
=
binintersect
(
binintersect
x0
x1
)
x2
(proof)
Theorem
binintersect_com_Subq
binintersect_com_Subq
:
∀ x0 x1 .
binintersect
x0
x1
⊆
binintersect
x1
x0
(proof)
Theorem
binintersect_com
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
(proof)
Theorem
binintersect_annil
binintersect_annil
:
∀ x0 .
binintersect
0
x0
=
0
(proof)
Theorem
binintersect_annir
binintersect_annir
:
∀ x0 .
binintersect
x0
0
=
0
(proof)
Theorem
binintersect_idem
binintersect_idem
:
∀ x0 .
binintersect
x0
x0
=
x0
(proof)
Theorem
binintersect_binunion_distr
binintersect_binunion_distr
:
∀ x0 x1 x2 .
binintersect
x0
(
binunion
x1
x2
)
=
binunion
(
binintersect
x0
x1
)
(
binintersect
x0
x2
)
(proof)
Theorem
binunion_binintersect_distr
binunion_binintersect_distr
:
∀ x0 x1 x2 .
binunion
x0
(
binintersect
x1
x2
)
=
binintersect
(
binunion
x0
x1
)
(
binunion
x0
x2
)
(proof)
Theorem
Subq_binintersection_eq
Subq_binintersection_eq
:
∀ x0 x1 .
x0
⊆
x1
=
(
binintersect
x0
x1
=
x0
)
(proof)
Theorem
binintersect_nIn_I1
binintersect_nIn_I1
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
(
binintersect
x0
x1
)
(proof)
Theorem
binintersect_nIn_I2
binintersect_nIn_I2
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
nIn
x2
(
binintersect
x0
x1
)
(proof)
Theorem
binintersect_nIn_E
binintersect_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
binintersect
x0
x1
)
⟶
or
(
nIn
x2
x0
)
(
nIn
x2
x1
)
(proof)
Definition
setminus
setminus
:=
λ x0 x1 .
{x2 ∈
x0
|
nIn
x2
x1
}
Theorem
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
(proof)
Theorem
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
(proof)
Theorem
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
(proof)
Theorem
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
(proof)
Theorem
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
(proof)
Theorem
setminus_Subq_contra
setminus_Subq_contra
:
∀ x0 x1 x2 .
x2
⊆
x1
⟶
setminus
x0
x1
⊆
setminus
x0
x2
(proof)
Theorem
setminus_nIn_I1
setminus_nIn_I1
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
(
setminus
x0
x1
)
(proof)
Theorem
setminus_nIn_I2
setminus_nIn_I2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
nIn
x2
(
setminus
x0
x1
)
(proof)
Theorem
setminus_nIn_E
setminus_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
setminus
x0
x1
)
⟶
or
(
nIn
x2
x0
)
(
x2
∈
x1
)
(proof)
Theorem
setminus_selfannih
setminus_selfannih
:
∀ x0 .
setminus
x0
x0
=
0
(proof)
Theorem
setminus_binintersect
setminus_binintersect
:
∀ x0 x1 x2 .
setminus
x0
(
binintersect
x1
x2
)
=
binunion
(
setminus
x0
x1
)
(
setminus
x0
x2
)
(proof)
Theorem
setminus_binunion
setminus_binunion
:
∀ x0 x1 x2 .
setminus
x0
(
binunion
x1
x2
)
=
setminus
(
setminus
x0
x1
)
x2
(proof)
Theorem
binintersect_setminus
binintersect_setminus
:
∀ x0 x1 x2 .
setminus
(
binintersect
x0
x1
)
x2
=
binintersect
x0
(
setminus
x1
x2
)
(proof)
Theorem
binunion_setminus
binunion_setminus
:
∀ x0 x1 x2 .
setminus
(
binunion
x0
x1
)
x2
=
binunion
(
setminus
x0
x2
)
(
setminus
x1
x2
)
(proof)
Theorem
setminus_setminus
setminus_setminus
:
∀ x0 x1 x2 .
setminus
x0
(
setminus
x1
x2
)
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x2
)
(proof)
Theorem
setminus_annil
setminus_annil
:
∀ x0 .
setminus
0
x0
=
0
(proof)
Theorem
setminus_idr
setminus_idr
:
∀ x0 .
setminus
x0
0
=
x0
(proof)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
(proof)
Theorem
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
(proof)
Theorem
In_no3cycle
In_no3cycle
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x0
⟶
False
(proof)
Definition
ordsucc
ordsucc
:=
λ x0 .
binunion
x0
(
Sing
x0
)
Theorem
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
(proof)
Theorem
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
(proof)
Theorem
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
(proof)
Theorem
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
(proof)
Theorem
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
(proof)
Theorem
In_0_1
In_0_1
:
0
∈
1
(proof)
Theorem
In_0_2
In_0_2
:
0
∈
2
(proof)
Theorem
In_1_2
In_1_2
:
1
∈
2
(proof)
Definition
nat_p
nat_p
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
Theorem
nat_0
nat_0
:
nat_p
0
(proof)
Theorem
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
(proof)
Theorem
nat_1
nat_1
:
nat_p
1
(proof)
Theorem
nat_2
nat_2
:
nat_p
2
(proof)
Theorem
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
(proof)
Theorem
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
(proof)
Theorem
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
(proof)
Theorem
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
(proof)
Theorem
nat_ordsucc_trans
nat_ordsucc_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
ordsucc
x0
⟶
x1
⊆
x0
(proof)
Theorem
Union_ordsucc_eq
Union_ordsucc_eq
:
∀ x0 .
nat_p
x0
⟶
prim3
(
ordsucc
x0
)
=
x0
(proof)
Definition
Union_closed
Union_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Definition
Power_closed
Power_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Definition
Repl_closed
Repl_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Definition
ZF_closed
ZF_closed
:=
λ x0 .
and
(
and
(
Union_closed
x0
)
(
Power_closed
x0
)
)
(
Repl_closed
x0
)
Theorem
ZF_closed_I
ZF_closed_I
:
∀ x0 .
Union_closed
x0
⟶
Power_closed
x0
⟶
Repl_closed
x0
⟶
ZF_closed
x0
(proof)
Theorem
ZF_closed_E
ZF_closed_E
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 : ο .
(
Union_closed
x0
⟶
Power_closed
x0
⟶
Repl_closed
x0
⟶
x1
)
⟶
x1
(proof)
Theorem
ZF_Union_closed
ZF_Union_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
(proof)
Theorem
ZF_Power_closed
ZF_Power_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
(proof)
Theorem
ZF_Repl_closed
ZF_Repl_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
(proof)
Theorem
ZF_UPair_closed
ZF_UPair_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
UPair
x1
x2
∈
x0
(proof)
Theorem
ZF_Sing_closed
ZF_Sing_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Sing
x1
∈
x0
(proof)
Theorem
ZF_binunion_closed
ZF_binunion_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
binunion
x1
x2
∈
x0
(proof)
Theorem
ZF_ordsucc_closed
ZF_ordsucc_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
(proof)
Known
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Known
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Theorem
nat_p_UnivOf_Empty
nat_p_UnivOf_Empty
:
∀ x0 .
nat_p
x0
⟶
x0
∈
prim6
0
(proof)
Definition
omega
omega
:=
Sep
(
prim6
0
)
nat_p
Theorem
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
(proof)
Theorem
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
(proof)
Theorem
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
(proof)
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Theorem
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
(proof)
Theorem
ordinal_In_TransSet
ordinal_In_TransSet
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
(proof)
Theorem
ordinal_Empty
ordinal_Empty
:
ordinal
0
(proof)
Theorem
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
(proof)
Theorem
TransSet_ordsucc
TransSet_ordsucc
:
∀ x0 .
TransSet
x0
⟶
TransSet
(
ordsucc
x0
)
(proof)
Theorem
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
(proof)
Theorem
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
(proof)
Theorem
ordinal_1
ordinal_1
:
ordinal
1
(proof)
Theorem
ordinal_2
ordinal_2
:
ordinal
2
(proof)
Theorem
omega_TransSet
omega_TransSet
:
TransSet
omega
(proof)
Theorem
omega_ordinal
omega_ordinal
:
ordinal
omega
(proof)
Theorem
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
(proof)
Theorem
TransSet_ordsucc_In_Subq
TransSet_ordsucc_In_Subq
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
(proof)
Theorem
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
(proof)
Theorem
ordinal_trichotomy_or
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
x0
∈
x1
)
(
x0
=
x1
)
)
(
x1
∈
x0
)
(proof)
Theorem
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
(proof)
Theorem
ordinal_linear
ordinal_linear
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
⊆
x1
)
(
x1
⊆
x0
)
(proof)
Theorem
ordinal_ordsucc_In_eq
ordinal_ordsucc_In_eq
:
∀ x0 x1 .
ordinal
x0
⟶
x1
∈
x0
⟶
or
(
ordsucc
x1
∈
x0
)
(
x0
=
ordsucc
x1
)
(proof)
Theorem
ordinal_lim_or_succ
ordinal_lim_or_succ
:
∀ x0 .
ordinal
x0
⟶
or
(
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
(proof)
Theorem
ordinal_Union
ordinal_Union
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
)
⟶
ordinal
(
prim3
x0
)
(proof)
Theorem
ordinal_famunion
ordinal_famunion
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
famunion
x0
x1
)
(proof)
Theorem
ordinal_binintersect
ordinal_binintersect
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binintersect
x0
x1
)
(proof)
Theorem
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
(proof)
Theorem
ordinal_Sep
ordinal_Sep
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x2
⟶
x1
x2
⟶
x1
x3
)
⟶
ordinal
(
Sep
x0
x1
)
(proof)
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
surj
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
inv
inv
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
prim0
(
λ x3 .
and
(
x3
∈
x0
)
(
x1
x3
=
x2
)
)
Theorem
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
(proof)
Theorem
inj_linv_coddep
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
x3
∈
x0
⟶
inv
x0
x2
(
x2
x3
)
=
x3
(proof)
Theorem
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
(proof)
Theorem
bij_comp
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
(proof)
Theorem
bij_id
bij_id
:
∀ x0 .
bij
x0
x0
(
λ x1 .
x1
)
(proof)
Theorem
bij_inj
bij_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
inj
x0
x1
x2
(proof)
Theorem
bij_surj
bij_surj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
surj
x0
x1
x2
(proof)
Theorem
inj_surj_bij
inj_surj_bij
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
surj
x0
x1
x2
⟶
bij
x0
x1
x2
(proof)
Theorem
surj_inv_inj
surj_inv_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
inj
x1
x0
(
inv
x0
x2
)
(proof)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Definition
infinite
infinite
:=
λ x0 .
not
(
finite
x0
)