Search for blocks/addresses/...
Proofgold Asset
asset id
d16e193c3b5130ad0645f3d8bba8f550cccc828effcea9792be4ec8e1db797c0
asset hash
c89075197cc17de26f541bc0dd53f18b281b46ff5d6bb2aa1d8c9eb7c585ea64
bday / block
15378
tx
7d20c..
preasset
doc published by
Pr4zB..
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
893fe..
:
add_nat
4
1
=
5
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
f3bb6..
:
add_nat
4
2
=
6
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
54790..
:
add_nat
4
3
=
7
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
36602..
:
add_nat
4
4
=
8
(proof)
Theorem
9dea5..
:
add_nat
8
1
=
9
(proof)
Theorem
118d3..
:
add_nat
8
2
=
10
(proof)
Theorem
cd2cb..
:
add_nat
8
3
=
11
(proof)
Theorem
69b67..
add_nat_8_4
:
add_nat
8
4
=
12
(proof)
Known
nat_4
nat_4
:
nat_p
4
Theorem
5f9b2..
:
add_nat
8
5
=
13
(proof)
Known
nat_5
nat_5
:
nat_p
5
Theorem
70d6d..
:
add_nat
8
6
=
14
(proof)
Known
nat_6
nat_6
:
nat_p
6
Theorem
e1175..
:
add_nat
8
7
=
15
(proof)
Known
nat_7
nat_7
:
nat_p
7
Theorem
1521b..
:
add_nat
8
8
=
16
(proof)
Theorem
4ff4f..
:
add_nat
11
1
=
12
(proof)
Theorem
cef3c..
:
add_nat
11
2
=
13
(proof)
Theorem
336f0..
:
add_nat
11
3
=
14
(proof)
Theorem
62dd3..
:
add_nat
11
4
=
15
(proof)
Theorem
525d1..
:
add_nat
11
5
=
16
(proof)
Theorem
91a85..
:
add_nat
11
6
=
17
(proof)
Theorem
a918d..
:
add_nat
11
7
=
18
(proof)
Theorem
50bed..
:
add_nat
11
8
=
19
(proof)
Known
nat_8
nat_8
:
nat_p
8
Theorem
45540..
:
add_nat
11
9
=
20
(proof)
Known
nat_9
nat_9
:
nat_p
9
Theorem
2e174..
:
add_nat
11
10
=
21
(proof)
Known
nat_10
nat_10
:
nat_p
10
Theorem
d5f37..
:
add_nat
11
11
=
22
(proof)
Known
nat_11
nat_11
:
nat_p
11
Theorem
90194..
:
add_nat
11
12
=
23
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
add_nat_1_1_2
add_nat_1_1_2
:
add_nat
1
1
=
2
Known
mul_add_nat_distrL
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Known
256ca..
:
add_nat
2
2
=
4
Theorem
c3da7..
:
mul_nat
2
2
=
4
(proof)
Theorem
5712d..
:
mul_nat
2
4
=
8
(proof)
Theorem
af7b1..
:
mul_nat
2
8
=
16
(proof)
Theorem
a9609..
:
add_nat
6
1
=
7
(proof)
Theorem
a16a6..
:
add_nat
6
2
=
8
(proof)
Theorem
c3434..
:
add_nat
6
3
=
9
(proof)
Theorem
2cf95..
:
add_nat
6
4
=
10
(proof)
Theorem
3df8e..
:
add_nat
16
1
=
17
(proof)
Theorem
019e3..
:
add_nat
16
2
=
18
(proof)
Theorem
dc79e..
:
add_nat
16
3
=
19
(proof)
Theorem
f956d..
:
add_nat
16
4
=
20
(proof)
Theorem
ba5ba..
:
add_nat
16
5
=
21
(proof)
Theorem
f5339..
:
add_nat
16
6
=
22
(proof)
Theorem
07f4e..
:
add_nat
16
7
=
23
(proof)
Theorem
816bd..
:
add_nat
16
8
=
24
(proof)
Theorem
a3f6a..
:
add_nat
16
9
=
25
(proof)
Theorem
d085c..
:
add_nat
16
10
=
26
(proof)
Theorem
fa3b7..
:
add_nat
16
11
=
27
(proof)
Theorem
fbe6e..
:
add_nat
16
12
=
28
(proof)
Known
nat_12
nat_12
:
nat_p
12
Theorem
22701..
:
add_nat
16
13
=
29
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
exp_nat
exp_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_nat
x0
)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
3e9f7..
exp_nat_1
:
∀ x0 .
exp_nat
x0
1
=
x0
(proof)
Theorem
a8f07..
:
exp_nat
2
2
=
4
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
add_nat_0L
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
95d11..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
(
mul_nat
2
x1
)
∈
mul_nat
2
x0
(proof)
Known
In_3_4
In_3_4
:
3
∈
4
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Theorem
d9442..
:
∀ x0 .
nat_p
x0
⟶
ordsucc
(
exp_nat
2
(
ordsucc
x0
)
)
∈
exp_nat
2
(
ordsucc
(
ordsucc
x0
)
)
(proof)
Theorem
adab1..
:
exp_nat
2
3
=
8
(proof)
Theorem
db1de..
:
exp_nat
2
4
=
16
(proof)