Search for blocks/addresses/...

Proofgold Asset

asset id
d573a51ce5a89beea9f61f94bd36e8832f44438837d0d80664b4a1bbfd472b73
asset hash
d2024fa0ab7c9e083ef4a958219dfa6937fa53c6914576357abf1c5a94879330
bday / block
12334
tx
25e7e..
preasset
doc published by PrGxv..
Param realreal : ι
Param add_SNoadd_SNo : ιιι
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param SNoS_SNoS_ : ιι
Param omegaomega : ι
Param SNoLtSNoLt : ιιο
Param apap : ιιι
Param eps_eps_ : ιι
Param minus_SNominus_SNo : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoSNo : ιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Known SNo_approx_real_repSNo_approx_real_rep : ∀ x0 . x0real∀ x1 : ο . (∀ x2 . x2setexp (SNoS_ omega) omega∀ x3 . x3setexp (SNoS_ omega) omega(∀ x4 . x4omegaSNoLt (ap x2 x4) x0)(∀ x4 . x4omegaSNoLt x0 (add_SNo (ap x2 x4) (eps_ x4)))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x2 x5) (ap x2 x4))(∀ x4 . x4omegaSNoLt (add_SNo (ap x3 x4) (minus_SNo (eps_ x4))) x0)(∀ x4 . x4omegaSNoLt x0 (ap x3 x4))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x3 x4) (ap x3 x5))SNoCutP (prim5 omega (ap x2)) (prim5 omega (ap x3))x0 = SNoCut (prim5 omega (ap x2)) (prim5 omega (ap x3))x1)x1
Param ordsuccordsucc : ιι
Param lamSigma : ι(ιι) → ι
Param SNoLevSNoLev : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Param SubqSubq : ιιο
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known SNo_approx_realSNo_approx_real : ∀ x0 . SNo x0∀ x1 . x1setexp (SNoS_ omega) omega∀ x2 . x2setexp (SNoS_ omega) omega(∀ x3 . x3omegaSNoLt (ap x1 x3) x0)(∀ x3 . x3omegaSNoLt x0 (add_SNo (ap x1 x3) (eps_ x3)))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x1 x4) (ap x1 x3))(∀ x3 . x3omegaSNoLt x0 (ap x2 x3))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x2 x3) (ap x2 x4))x0 = SNoCut (prim5 omega (ap x1)) (prim5 omega (ap x2))x0real
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known add_SNo_Lt3add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Param nat_pnat_p : ιο
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Known add_SNo_eqadd_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1add_SNo x0 x1 = SNoCut (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Known SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known add_SNo_SNoCutPadd_SNo_SNoCutP : ∀ x0 x1 . SNo x0SNo x1SNoCutP (binunion {add_SNo x2 x1|x2 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x2 x1|x2 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Param SNoLeSNoLe : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Param abs_SNoabs_SNo : ιι
Known real_SNoS_omega_propreal_SNoS_omega_prop : ∀ x0 . x0real∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0
Known SNoLev_In_real_SNoS_omegaSNoLev_In_real_SNoS_omega : ∀ x0 . x0real∀ x1 . SNo x1SNoLev x1SNoLev x0x1SNoS_ omega
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_com_3b_1_2add_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo (add_SNo x0 x1) x2 = add_SNo (add_SNo x0 x2) x1
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Theorem real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real (proof)
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Theorem 1a68c.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 x1 = add_SNo x3 x2add_SNo x0 (add_SNo x1 (minus_SNo x2)) = x3 (proof)
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known add_SNo_minus_Lt1b3add_SNo_minus_Lt1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x0 x1) (add_SNo x3 x2)SNoLt (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Theorem add_SNo_minus_Le1b3add_SNo_minus_Le1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe (add_SNo x0 x1) (add_SNo x3 x2)SNoLe (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3 (proof)