Search for blocks/addresses/...
Proofgold Asset
asset id
d3dae59a3acbea3f4e50b4299326d52ceab4717195abfbce0ab376467156b1a8
asset hash
fecdeb840b11f7ffa50eeac41e033fe3c896560984dec83ee15bc13b88efbcab
bday / block
26813
tx
84ba9..
preasset
doc published by
Pr5Zc..
Known
45f87..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
=
x1
x3
(
x1
x4
(
x1
x2
x5
)
)
Known
6ca8f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x4
(
x1
x6
x9
)
)
)
)
)
)
Theorem
28074..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x4
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
b54f6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x4
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
4bed1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x4
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
7a2aa..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x4
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
75b00..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
x7
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
x7
)
)
)
)
Known
cb1ef..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x5
(
x1
x6
x9
)
)
)
)
)
)
Theorem
da4cc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x6
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
2cc4a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x6
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Known
d9e6b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x4
x9
)
)
)
)
)
)
Theorem
9394a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x6
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
525dc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x6
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Known
dcc95..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x5
x9
)
)
)
)
)
)
Theorem
d9510..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x7
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
3623f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x7
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
197d7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x7
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
77acf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x8
(
x1
x7
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Known
d6be8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x4
(
x1
x7
x9
)
)
)
)
)
)
Theorem
5da9c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x4
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
b8552..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x4
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
99c36..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x4
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
470a8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x4
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Known
fbc95..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x5
(
x1
x7
x9
)
)
)
)
)
)
Theorem
4889e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x8
x4
)
)
)
)
)
)
(proof)
Theorem
bddc6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x8
x4
)
)
)
)
)
)
(proof)
Theorem
ad906..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x4
x8
)
)
)
)
)
)
(proof)
Theorem
756ed..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x6
(
x1
x4
x8
)
)
)
)
)
)
(proof)
Known
e3793..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x5
x9
)
)
)
)
)
)
Theorem
f60f2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x8
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Theorem
1a3e9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x8
(
x1
x6
x4
)
)
)
)
)
)
(proof)
Known
044e4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x4
x9
)
)
)
)
)
)
Theorem
1d756..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x8
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
a7193..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x7
(
x1
x8
(
x1
x4
x6
)
)
)
)
)
)
(proof)
Theorem
0739d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x4
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
0fe25..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x4
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
df51c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x4
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
5ad9a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x4
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Known
c7e83..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x5
(
x1
x6
(
x1
x7
x9
)
)
)
)
)
)
Theorem
49837..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x8
x4
)
)
)
)
)
)
(proof)
Theorem
7d1e6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x8
x4
)
)
)
)
)
)
(proof)
Theorem
5d2e2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x4
x8
)
)
)
)
)
)
(proof)
Theorem
2affe..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x7
(
x1
x4
x8
)
)
)
)
)
)
(proof)
Known
ecbca..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x3
(
x1
x5
(
x1
x7
(
x1
x6
x9
)
)
)
)
)
)
Theorem
9e58a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x8
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
092fa..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x8
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
2eb2f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x8
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
ceb65..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x6
(
x1
x8
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Known
bf72b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
x9
)
)
)
)
)
)
Theorem
9a6c6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
fa8cf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
f0e16..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
946a6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
6676e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
85030..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Known
2d48e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
x9
)
)
)
)
)
)
Theorem
a968b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
fa7e2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
2cd4e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
6aba3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
9c754..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
550b9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
cab70..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x6
x9
)
)
)
)
)
)
Theorem
f1fe7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x3
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
26b04..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x3
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
2cf6d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x3
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
4225d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x3
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
c0c54..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x2
x8
)
)
)
)
)
Theorem
cacf7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
b79dc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Known
40c62..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x3
x9
)
)
)
)
)
)
Theorem
37ea9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
ea999..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
76534..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x7
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
6f795..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x7
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
64da2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x7
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
7390a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x8
(
x1
x7
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Known
08444..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x7
x9
)
)
)
)
)
)
Theorem
6a0ef..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
954bc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
fee3d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
aa0ba..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x3
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
63c79..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x8
x3
)
)
)
)
)
)
(proof)
Theorem
50ff9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x8
x3
)
)
)
)
)
)
(proof)
Theorem
2c06d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x3
x8
)
)
)
)
)
)
(proof)
Theorem
28d9b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x3
x8
)
)
)
)
)
)
(proof)
Theorem
0cd48..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x8
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Theorem
ce654..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x8
(
x1
x6
x3
)
)
)
)
)
)
(proof)
Known
63dea..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x3
x9
)
)
)
)
)
)
Theorem
a8d7f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x8
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
51b52..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x7
(
x1
x8
(
x1
x3
x6
)
)
)
)
)
)
(proof)
Theorem
dc90f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
ced6c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
a6c1e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
97431..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x3
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
4c169..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x8
x3
)
)
)
)
)
)
(proof)
Theorem
47d10..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x8
x3
)
)
)
)
)
)
(proof)
Theorem
74c2d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x3
x8
)
)
)
)
)
)
(proof)
Theorem
fba93..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x3
x8
)
)
)
)
)
)
(proof)
Theorem
2dc3c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
7e02f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
436c1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
64f1f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Known
cbe72..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x7
x9
)
)
)
)
)
)
Theorem
06610..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
8777b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x8
x7
)
)
)
)
)
)
(proof)
Theorem
d9fc2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
babd6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
)
(proof)
Theorem
8e92c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Theorem
b6f13..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x8
x6
)
)
)
)
)
)
(proof)
Known
5da67..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x6
x9
)
)
)
)
)
)
Theorem
069d7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
ba582..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x7
(
x1
x6
x8
)
)
)
)
)
)
(proof)
Theorem
a187e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x8
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
bfa2f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x8
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
4d3c4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x8
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
647be..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x4
(
x1
x3
(
x1
x8
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
dd170..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x5
(
x1
x7
(
x1
x3
(
x1
x6
x9
)
)
)
)
)
)
Theorem
9fd6d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Theorem
71463..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x7
x4
)
)
)
)
)
)
(proof)
Known
50540..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x3
(
x1
x4
x9
)
)
)
)
)
)
Theorem
1eb9d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
d47dc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x3
(
x1
x4
x7
)
)
)
)
)
)
(proof)
Theorem
0a102..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x4
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Theorem
18924..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x4
(
x1
x7
x3
)
)
)
)
)
)
(proof)
Known
97685..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x4
(
x1
x3
x9
)
)
)
)
)
)
Theorem
7b26f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x4
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Theorem
d5008..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x4
(
x1
x3
x7
)
)
)
)
)
)
(proof)
Known
a02a5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x2
(
x1
x4
(
x1
x5
(
x1
x7
(
x1
x6
(
x1
x3
x9
)
)
)
)
)
)
Theorem
06ee2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x7
(
x1
x4
x3
)
)
)
)
)
)
(proof)
Theorem
f5641..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x8
(
x1
x7
(
x1
x4
x3
)
)
)
)
)
)
(proof)