Search for blocks/addresses/...
Proofgold Asset
asset id
5aa77202cae5aefad418020f4cc28f7565fd9812449e0647cbb9e508e7e6740d
asset hash
d68f14ef8dcb0974fba661dc72e9774e17393ae078f8a5f5706e29520d2ca617
bday / block
2899
tx
ffcc5..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
73737..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
d2155..
x0
x2
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
Theorem
5e270..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
73737..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
0717a..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
x3
x0
(
f482f..
(
73737..
x0
x1
x2
)
4a7ef..
)
⟶
x3
(
f482f..
(
73737..
x0
x1
x2
)
4a7ef..
)
x0
(proof)
Known
c2bca..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
b5f96..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
73737..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
13bf1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
f482f..
(
f482f..
(
73737..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
99d82..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
73737..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
8a141..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
2b2e3..
(
f482f..
(
73737..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
0d55e..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
73737..
x0
x2
x4
=
73737..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
a6f1a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
=
x2
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
73737..
x0
x1
x3
=
73737..
x0
x2
x4
(proof)
Definition
e5836..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
x1
(
73737..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
a15d6..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
e5836..
(
73737..
x0
x1
x2
)
(proof)
Theorem
05946..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
e5836..
(
73737..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x3
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
6f612..
:
∀ x0 .
e5836..
x0
⟶
x0
=
73737..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
c7882..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
0ae8d..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
c7882..
(
73737..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
54aad..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
6036d..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
54aad..
(
73737..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
da24e..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
1216a..
x0
x2
)
)
)
Theorem
ab466..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
da24e..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
3b630..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
x0
=
f482f..
(
da24e..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
059c3..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
da24e..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
81d59..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
f482f..
(
f482f..
(
da24e..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
5bfd0..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
da24e..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
ba55d..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
decode_p
(
f482f..
(
da24e..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
943ec..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
da24e..
x0
x2
x4
=
da24e..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
df1be..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
=
x2
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
da24e..
x0
x1
x3
=
da24e..
x0
x2
x4
(proof)
Definition
836b1..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι → ο
.
x1
(
da24e..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
6227c..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι → ο
.
836b1..
(
da24e..
x0
x1
x2
)
(proof)
Theorem
9bb50..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
836b1..
(
da24e..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x3
)
x0
(proof)
Theorem
c29f4..
:
∀ x0 .
836b1..
x0
⟶
x0
=
da24e..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
f614a..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
b4c19..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
f614a..
(
da24e..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
b4400..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
16896..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
b4400..
(
da24e..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
8eacd..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
x2
)
)
Theorem
97d26..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
x0
=
8eacd..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
30e8e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x0
=
f482f..
(
8eacd..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
f1b26..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
x0
=
8eacd..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
1ddeb..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x3
x0
⟶
x1
x3
=
f482f..
(
f482f..
(
8eacd..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
1e3c2..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
x0
=
8eacd..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
a04cc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
=
f482f..
(
8eacd..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
b6081..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 .
8eacd..
x0
x2
x4
=
8eacd..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
x4
=
x5
)
(proof)
Theorem
5ab49..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 .
(
∀ x4 .
prim1
x4
x0
⟶
x1
x4
=
x2
x4
)
⟶
8eacd..
x0
x1
x3
=
8eacd..
x0
x2
x3
(proof)
Definition
d7681..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 .
prim1
x4
x2
⟶
x1
(
8eacd..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
0cbda..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 .
prim1
x2
x0
⟶
d7681..
(
8eacd..
x0
x1
x2
)
(proof)
Theorem
c857f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
d7681..
(
8eacd..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x3
)
x0
(proof)
Theorem
f77e0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
d7681..
(
8eacd..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
b617b..
:
∀ x0 .
d7681..
x0
⟶
x0
=
8eacd..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
a366a..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
8faf4..
:
∀ x0 :
ι →
(
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 .
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
a366a..
(
8eacd..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
f1574..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
87465..
:
∀ x0 :
ι →
(
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 .
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
f1574..
(
8eacd..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
08354..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
d2155..
x0
x2
)
)
)
Theorem
7e1bc..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
x0
=
08354..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f7f73..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ο
.
x3
x0
(
f482f..
(
08354..
x0
x1
x2
)
4a7ef..
)
⟶
x3
(
f482f..
(
08354..
x0
x1
x2
)
4a7ef..
)
x0
(proof)
Theorem
dad57..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
x0
=
08354..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
60aa8..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
2b2e3..
(
f482f..
(
08354..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
6fb62..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
x0
=
08354..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
592f1..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
2b2e3..
(
f482f..
(
08354..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Theorem
7d9fd..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ο
.
08354..
x0
x2
x4
=
08354..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Theorem
a26f3..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x1
x5
x6
)
(
x2
x5
x6
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
08354..
x0
x1
x3
=
08354..
x0
x2
x4
(proof)
Definition
08eae..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
x1
(
08354..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
b3521..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
08eae..
(
08354..
x0
x1
x2
)
(proof)
Theorem
d1048..
:
∀ x0 .
08eae..
x0
⟶
x0
=
08354..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
9663d..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
451a8..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
9663d..
(
08354..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
b5e83..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
0c40b..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
b5e83..
(
08354..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
42836..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
1216a..
x0
x2
)
)
)
Theorem
a7210..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
42836..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
3b2a9..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
x0
=
f482f..
(
42836..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
0ad5e..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
42836..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
4bd1d..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
2b2e3..
(
f482f..
(
42836..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
f4109..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
x0
=
42836..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
54b81..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
decode_p
(
f482f..
(
42836..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
ea72b..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
42836..
x0
x2
x4
=
42836..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Theorem
0b00c..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x1
x5
x6
)
(
x2
x5
x6
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
42836..
x0
x1
x3
=
42836..
x0
x2
x4
(proof)
Definition
7b9a8..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x1
(
42836..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
cdeb8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 :
ι → ο
.
7b9a8..
(
42836..
x0
x1
x2
)
(proof)
Theorem
b127a..
:
∀ x0 .
7b9a8..
x0
⟶
x0
=
42836..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
8547b..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
5946d..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
8547b..
(
42836..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
24d60..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
b19dd..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
24d60..
(
42836..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
dd3c8..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
x2
)
)
Theorem
c7e82..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
dd3c8..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
e0b06..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x0
=
f482f..
(
dd3c8..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
7c649..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
dd3c8..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
76e61..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
2b2e3..
(
f482f..
(
dd3c8..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
72fdb..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x0
=
dd3c8..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
fd239..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x2
=
f482f..
(
dd3c8..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
9c7d4..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 .
dd3c8..
x0
x2
x4
=
dd3c8..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
x4
=
x5
)
(proof)
Theorem
2098a..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
iff
(
x1
x4
x5
)
(
x2
x4
x5
)
)
⟶
dd3c8..
x0
x1
x3
=
dd3c8..
x0
x2
x3
(proof)
Definition
f7c54..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
∀ x4 .
prim1
x4
x2
⟶
x1
(
dd3c8..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
e8e7c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
f7c54..
(
dd3c8..
x0
x1
x2
)
(proof)
Theorem
4b1e4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
f7c54..
(
dd3c8..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
014b6..
:
∀ x0 .
f7c54..
x0
⟶
x0
=
dd3c8..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
47d0a..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
8088b..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 .
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
47d0a..
(
dd3c8..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
a0dc3..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
53c70..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
∀ x3 .
(
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
iff
(
x2
x5
x6
)
(
x4
x5
x6
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
a0dc3..
(
dd3c8..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)