Search for blocks/addresses/...

Proofgold Asset

asset id
d7271af516db379b4bcf22dfba8f6c36567ee376789d3aec5ac71850670b0f26
asset hash
e3342bc712ef3cf7fb55a0ea5e9cb02cd4993f908aee974dd70d514becbacedd
bday / block
4898
tx
d0fc7..
preasset
doc published by Pr6Pc..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition nSubqnSubq := λ x0 x1 . not (x0x1)
Param ordsuccordsucc : ιι
Known neq_0_ordsuccneq_0_ordsucc : ∀ x0 . 0 = ordsucc x0∀ x1 : ο . x1
Theorem neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0 (proof)
Theorem neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0 (proof)
Known ordsucc_inj_contraordsucc_inj_contra : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)ordsucc x0 = ordsucc x1∀ x2 : ο . x2
Theorem neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0 (proof)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Theorem nIn_0_0nIn_0_0 : nIn 0 0 (proof)
Theorem nIn_1_0nIn_1_0 : nIn 1 0 (proof)
Theorem nIn_2_0nIn_2_0 : nIn 2 0 (proof)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem nIn_1_1nIn_1_1 : nIn 1 1 (proof)
Theorem nIn_2_2nIn_2_2 : nIn 2 2 (proof)
Known Subq_EmptySubq_Empty : ∀ x0 . 0x0
Theorem Subq_0_0Subq_0_0 : 00 (proof)
Theorem Subq_0_1Subq_0_1 : 01 (proof)
Theorem Subq_0_2Subq_0_2 : 02 (proof)
Known In_0_1In_0_1 : 01
Theorem nSubq_1_0nSubq_1_0 : nSubq 1 0 (proof)
Known Subq_refSubq_ref : ∀ x0 . x0x0
Theorem Subq_1_1Subq_1_1 : 11 (proof)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem Subq_1_2Subq_1_2 : 12 (proof)
Known In_0_2In_0_2 : 02
Theorem nSubq_2_0nSubq_2_0 : nSubq 2 0 (proof)
Known In_1_2In_1_2 : 12
Theorem nSubq_2_1nSubq_2_1 : nSubq 2 1 (proof)
Theorem Subq_2_2Subq_2_2 : 22 (proof)
Param nat_pnat_p : ιο
Known nat_complete_indnat_complete_ind : ∀ x0 : ι → ο . (∀ x1 . nat_p x1(∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . nat_p x1x0 x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known UnionE_impredUnionE_impred : ∀ x0 x1 . x1prim3 x0∀ x2 : ο . (∀ x3 . x1x3x3x0x2)x2
Known nat_ordsucc_transnat_ordsucc_trans : ∀ x0 . nat_p x0∀ x1 . x1ordsucc x0x1x0
Known UnionIUnionI : ∀ x0 x1 x2 . x1x2x2x0x1prim3 x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known Union_ordsucc_eqUnion_ordsucc_eq : ∀ x0 . nat_p x0prim3 (ordsucc x0) = x0
Theorem In_0_3In_0_3 : 03 (proof)
Theorem In_1_3In_1_3 : 13 (proof)
Theorem In_2_3In_2_3 : 23 (proof)
Theorem In_0_4In_0_4 : 04 (proof)
Theorem In_1_4In_1_4 : 14 (proof)
Theorem In_2_4In_2_4 : 24 (proof)
Theorem In_3_4In_3_4 : 34 (proof)
Theorem In_0_5In_0_5 : 05 (proof)
Theorem In_1_5In_1_5 : 15 (proof)
Theorem In_2_5In_2_5 : 25 (proof)
Theorem In_3_5In_3_5 : 35 (proof)
Theorem In_4_5In_4_5 : 45 (proof)
Theorem In_0_6In_0_6 : 06 (proof)
Theorem In_1_6In_1_6 : 16 (proof)
Theorem In_2_6In_2_6 : 26 (proof)
Theorem In_3_6In_3_6 : 36 (proof)
Theorem In_4_6In_4_6 : 46 (proof)
Theorem In_5_6In_5_6 : 56 (proof)
Theorem In_0_7In_0_7 : 07 (proof)
Theorem In_1_7In_1_7 : 17 (proof)
Theorem In_2_7In_2_7 : 27 (proof)
Theorem In_3_7In_3_7 : 37 (proof)
Theorem In_4_7In_4_7 : 47 (proof)
Theorem In_5_7In_5_7 : 57 (proof)
Theorem In_6_7In_6_7 : 67 (proof)
Theorem In_0_8In_0_8 : 08 (proof)
Theorem In_1_8In_1_8 : 18 (proof)
Theorem In_2_8In_2_8 : 28 (proof)
Theorem In_3_8In_3_8 : 38 (proof)
Theorem In_4_8In_4_8 : 48 (proof)
Theorem In_5_8In_5_8 : 58 (proof)
Theorem In_6_8In_6_8 : 68 (proof)
Theorem In_7_8In_7_8 : 78 (proof)
Theorem In_0_9In_0_9 : 09 (proof)
Theorem In_1_9In_1_9 : 19 (proof)
Theorem In_2_9In_2_9 : 29 (proof)
Theorem In_3_9In_3_9 : 39 (proof)
Theorem In_4_9In_4_9 : 49 (proof)
Theorem In_5_9In_5_9 : 59 (proof)
Theorem In_6_9In_6_9 : 69 (proof)
Theorem In_7_9In_7_9 : 79 (proof)
Theorem In_8_9In_8_9 : 89 (proof)
Param In_rec_iIn_rec_i : (ι(ιι) → ι) → ιι
Param If_iIf_i : οιιι
Definition nat_primrecnat_primrec := λ x0 . λ x1 : ι → ι → ι . In_rec_i (λ x2 . λ x3 : ι → ι . If_i (prim3 x2x2) (x1 (prim3 x2) (x3 (prim3 x2))) x0)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem nat_primrec_rnat_primrec_r : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . ∀ x3 x4 : ι → ι . (∀ x5 . x5x2x3 x5 = x4 x5)If_i (prim3 x2x2) (x1 (prim3 x2) (x3 (prim3 x2))) x0 = If_i (prim3 x2x2) (x1 (prim3 x2) (x4 (prim3 x2))) x0 (proof)
Known In_rec_i_eqIn_rec_i_eq : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . In_rec_i x0 x1 = x0 x1 (In_rec_i x0)
Theorem nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0 (proof)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2) (proof)
Definition add_natadd_nat := λ x0 . nat_primrec x0 (λ x1 . ordsucc)
Theorem add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0 (proof)
Theorem add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1) (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1) (proof)
Theorem add_nat_assoadd_nat_asso : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . nat_p x2add_nat (add_nat x0 x1) x2 = add_nat x0 (add_nat x1 x2) (proof)
Theorem add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0 (proof)
Theorem add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1) (proof)
Theorem add_nat_comadd_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0 (proof)
Definition mul_natmul_nat := λ x0 . nat_primrec 0 (λ x1 . add_nat x0)
Theorem mul_nat_0Rmul_nat_0R : ∀ x0 . mul_nat x0 0 = 0 (proof)
Theorem mul_nat_SRmul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1) (proof)
Known nat_0nat_0 : nat_p 0
Theorem mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1) (proof)
Theorem mul_nat_0Lmul_nat_0L : ∀ x0 . nat_p x0mul_nat 0 x0 = 0 (proof)
Theorem mul_nat_SLmul_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat (ordsucc x0) x1 = add_nat (mul_nat x0 x1) x1 (proof)
Theorem mul_nat_commul_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat x0 x1 = mul_nat x1 x0 (proof)
Theorem mul_add_nat_distrLmul_add_nat_distrL : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . nat_p x2mul_nat x0 (add_nat x1 x2) = add_nat (mul_nat x0 x1) (mul_nat x0 x2) (proof)
Theorem mul_add_nat_distrRmul_add_nat_distrR : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . nat_p x2mul_nat (add_nat x0 x1) x2 = add_nat (mul_nat x0 x2) (mul_nat x1 x2) (proof)
Theorem mul_nat_assomul_nat_asso : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . nat_p x2mul_nat (mul_nat x0 x1) x2 = mul_nat x0 (mul_nat x1 x2) (proof)
Theorem add_nat_1_1_2add_nat_1_1_2 : add_nat 1 1 = 2 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem PigeonHole_natPigeonHole_nat : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2ordsucc x0x1 x2x0)not (∀ x2 . x2ordsucc x0∀ x3 . x3ordsucc x0x1 x2 = x1 x3x2 = x3) (proof)
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Theorem PigeonHole_nat_bijPigeonHole_nat_bij : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)bij x0 x0 x1 (proof)