Search for blocks/addresses/...
Proofgold Asset
asset id
d872ea0d1a42b4e9893f349c1cf59ff72ef2f2ff2b41de38afc06d685077f85d
asset hash
6d08006df24372974830d42609bfd42cacddf486b07792c6f6e98b2ddd67b632
bday / block
28142
tx
2a9bf..
preasset
doc published by
PrQUS..
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Param
Sing
Sing
:
ι
→
ι
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_0_1
In_0_1
:
0
∈
1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Theorem
not_TransSet_Sing_tagn
not_TransSet_Sing_tagn
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
not
(
TransSet
(
Sing
x0
)
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Theorem
not_ordinal_Sing_tagn
not_ordinal_Sing_tagn
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
not
(
ordinal
(
Sing
x0
)
)
(proof)
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Theorem
c383e..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
not
(
ordinal
(
SetAdjoin
x1
(
Sing
x0
)
)
)
(proof)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Theorem
1a4b4..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 .
ordinal
x1
⟶
nIn
(
SetAdjoin
x2
(
Sing
x0
)
)
x1
(proof)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
292f1..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
nIn
(
Sing
x0
)
(
Sing
(
Sing
1
)
)
(proof)
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Definition
SNoElts_
SNoElts_
:=
λ x0 .
binunion
x0
{
SetAdjoin
x1
(
Sing
1
)
|x1 ∈
x0
}
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Definition
SNo_
SNo_
:=
λ x0 x1 .
and
(
x1
⊆
SNoElts_
x0
)
(
∀ x2 .
x2
∈
x0
⟶
exactly1of2
(
SetAdjoin
x2
(
Sing
1
)
∈
x1
)
(
x2
∈
x1
)
)
Known
SNoLev_prop
SNoLev_prop
:
∀ x0 .
SNo
x0
⟶
and
(
ordinal
(
SNoLev
x0
)
)
(
SNo_
(
SNoLev
x0
)
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
3bbaa..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 .
SNo
x1
⟶
nIn
(
SetAdjoin
x2
(
Sing
x0
)
)
x1
(proof)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Theorem
799ec..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x2
⟶
SetAdjoin
x3
(
Sing
x0
)
=
SetAdjoin
x4
(
Sing
x0
)
⟶
x3
⊆
x4
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
8244d..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x2
⟶
SetAdjoin
x3
(
Sing
x0
)
=
SetAdjoin
x4
(
Sing
x0
)
⟶
x3
=
x4
(proof)
Definition
e9c39..
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
(
Sing
x0
)
|x3 ∈
x2
}
Theorem
71aee..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
SNo
x1
⟶
e9c39..
x0
x1
x2
=
e9c39..
x0
x3
x4
⟶
x1
⊆
x3
(proof)
Theorem
0efc6..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x3
⟶
e9c39..
x0
x1
x2
=
e9c39..
x0
x3
x4
⟶
x1
=
x3
(proof)
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
8e0ee..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
e9c39..
x0
x1
x2
=
e9c39..
x0
x3
x4
⟶
x2
⊆
x4
(proof)
Theorem
37675..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
e9c39..
x0
x1
x2
=
e9c39..
x0
x3
x4
⟶
x2
=
x4
(proof)
Known
Repl_Empty
Repl_Empty
:
∀ x0 :
ι → ι
.
prim5
0
x0
=
0
Known
binunion_idr
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
Theorem
3d28a..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
e9c39..
x0
x1
0
=
x1
(proof)
Definition
ad280..
:=
e9c39..
2
Known
nat_2
nat_2
:
nat_p
2
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
43bcd..
:
∀ x0 .
ad280..
x0
0
=
x0
(proof)
Theorem
8ae5d..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x2
⟶
ad280..
x0
x1
=
ad280..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
943f5..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
ad280..
x0
x1
=
ad280..
x2
x3
⟶
x1
=
x3
(proof)
Definition
c7ce4..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
x0
=
ad280..
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
e4080..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
c7ce4..
(
ad280..
x0
x1
)
(proof)
Theorem
3577c..
:
∀ x0 .
c7ce4..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
SNo
x2
⟶
SNo
x3
⟶
x0
=
ad280..
x2
x3
⟶
x1
(
ad280..
x2
x3
)
)
⟶
x1
x0
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Theorem
2c33a..
:
∀ x0 .
SNo
x0
⟶
c7ce4..
x0
(proof)
Theorem
Sing_inj
Sing_inj
:
∀ x0 x1 .
Sing
x0
=
Sing
x1
⟶
x0
=
x1
(proof)
Definition
68498..
:=
λ x0 x1 .
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
or
(
x2
∈
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x4
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
and
(
1
∈
x8
)
(
x2
=
SetAdjoin
x6
(
Sing
x8
)
)
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
x3
)
⟶
x3
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Theorem
f4add..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
∀ x2 x3 x4 .
SNo
x3
⟶
x4
∈
x3
⟶
SetAdjoin
x2
(
Sing
x0
)
=
SetAdjoin
x4
(
Sing
x1
)
⟶
∀ x5 : ο .
x5
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
23602..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 .
68498..
x0
x1
⟶
SNo
x2
⟶
68498..
(
ordsucc
x0
)
(
binunion
x1
{
SetAdjoin
x3
(
Sing
x0
)
|x3 ∈
x2
}
)
(proof)
Theorem
a2c24..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
68498..
x0
x1
⟶
binunion
x1
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x3
}
=
binunion
x2
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x4
}
⟶
x1
⊆
x2
(proof)
Theorem
90357..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
68498..
x0
x1
⟶
68498..
x0
x2
⟶
binunion
x1
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x3
}
=
binunion
x2
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x4
}
⟶
x1
=
x2
(proof)
Theorem
3e83d..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
68498..
x0
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
binunion
x1
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x3
}
=
binunion
x2
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x4
}
⟶
x3
⊆
x4
(proof)
Theorem
f57d5..
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 x2 x3 x4 .
68498..
x0
x1
⟶
68498..
x0
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
binunion
x1
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x3
}
=
binunion
x2
{
SetAdjoin
x6
(
Sing
x0
)
|x6 ∈
x4
}
⟶
x3
=
x4
(proof)
Theorem
42ea0..
:
∀ x0 x1 .
SNo
x0
⟶
68498..
x1
x0
(proof)
Theorem
bfcc8..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
68498..
3
(
ad280..
x0
x1
)
(proof)
Definition
f4b0e..
:=
λ x0 x1 x2 x3 .
binunion
(
binunion
(
binunion
x0
{
SetAdjoin
x4
(
Sing
2
)
|x4 ∈
x1
}
)
{
SetAdjoin
x4
(
Sing
3
)
|x4 ∈
x2
}
)
{
SetAdjoin
x4
(
Sing
4
)
|x4 ∈
x3
}
Known
nat_4
nat_4
:
nat_p
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
nat_3
nat_3
:
nat_p
3
Known
In_1_3
In_1_3
:
1
∈
3
Theorem
74b2d..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
68498..
5
(
f4b0e..
x0
x1
x2
x3
)
(proof)
Theorem
84fad..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
f4b0e..
x0
x1
x2
x3
=
f4b0e..
x4
x5
x6
x7
⟶
x0
=
x4
(proof)
Theorem
aa1e8..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
f4b0e..
x0
x1
x2
x3
=
f4b0e..
x4
x5
x6
x7
⟶
x1
=
x5
(proof)
Theorem
04ead..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
f4b0e..
x0
x1
x2
x3
=
f4b0e..
x4
x5
x6
x7
⟶
x2
=
x6
(proof)
Theorem
57cf4..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
f4b0e..
x0
x1
x2
x3
=
f4b0e..
x4
x5
x6
x7
⟶
x3
=
x7
(proof)
Definition
8c189..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
x0
=
f4b0e..
x2
x4
x6
x8
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Theorem
70bda..
:
∀ x0 x1 x2 .
f4b0e..
x0
x1
x2
0
=
binunion
(
binunion
x0
{
SetAdjoin
x4
(
Sing
2
)
|x4 ∈
x1
}
)
{
SetAdjoin
x4
(
Sing
3
)
|x4 ∈
x2
}
(proof)
Theorem
27253..
:
∀ x0 x1 .
f4b0e..
x0
x1
0
0
=
ad280..
x0
x1
(proof)
Theorem
fb499..
:
∀ x0 .
f4b0e..
x0
0
0
0
=
x0
(proof)
Theorem
ca287..
:
∀ x0 .
c7ce4..
x0
⟶
8c189..
x0
(proof)
Definition
bbc71..
:=
λ x0 x1 x2 x3 x4 x5 x6 x7 .
binunion
(
binunion
(
binunion
(
binunion
(
binunion
(
binunion
(
binunion
x0
{
SetAdjoin
x8
(
Sing
2
)
|x8 ∈
x1
}
)
{
SetAdjoin
x8
(
Sing
3
)
|x8 ∈
x2
}
)
{
SetAdjoin
x8
(
Sing
4
)
|x8 ∈
x3
}
)
{
SetAdjoin
x8
(
Sing
5
)
|x8 ∈
x4
}
)
{
SetAdjoin
x8
(
Sing
6
)
|x8 ∈
x5
}
)
{
SetAdjoin
x8
(
Sing
7
)
|x8 ∈
x6
}
)
{
SetAdjoin
x8
(
Sing
8
)
|x8 ∈
x7
}
Known
nat_8
nat_8
:
nat_p
8
Known
In_1_8
In_1_8
:
1
∈
8
Known
nat_7
nat_7
:
nat_p
7
Known
In_1_7
In_1_7
:
1
∈
7
Known
nat_6
nat_6
:
nat_p
6
Known
In_1_6
In_1_6
:
1
∈
6
Known
nat_5
nat_5
:
nat_p
5
Known
In_1_5
In_1_5
:
1
∈
5
Theorem
0e211..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
68498..
9
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
(proof)
Theorem
cca09..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x0
=
x8
(proof)
Theorem
babe8..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x1
=
x9
(proof)
Theorem
6488e..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x2
=
x10
(proof)
Theorem
ad01a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x3
=
x11
(proof)
Theorem
f4559..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x4
=
x12
(proof)
Theorem
f56fc..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x5
=
x13
(proof)
Theorem
4a66b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x6
=
x14
(proof)
Theorem
7c302..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
=
bbc71..
x8
x9
x10
x11
x12
x13
x14
x15
⟶
x7
=
x15
(proof)
Definition
1eb0a..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
SNo
x16
)
(
x0
=
bbc71..
x2
x4
x6
x8
x10
x12
x14
x16
)
⟶
x15
)
⟶
x15
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Theorem
b1d98..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
bbc71..
x0
x1
x2
x3
x4
x5
x6
0
=
binunion
(
binunion
(
binunion
(
f4b0e..
x0
x1
x2
x3
)
{
SetAdjoin
x8
(
Sing
5
)
|x8 ∈
x4
}
)
{
SetAdjoin
x8
(
Sing
6
)
|x8 ∈
x5
}
)
{
SetAdjoin
x8
(
Sing
7
)
|x8 ∈
x6
}
(proof)
Theorem
2e171..
:
∀ x0 x1 x2 x3 x4 x5 .
bbc71..
x0
x1
x2
x3
x4
x5
0
0
=
binunion
(
binunion
(
f4b0e..
x0
x1
x2
x3
)
{
SetAdjoin
x7
(
Sing
5
)
|x7 ∈
x4
}
)
{
SetAdjoin
x7
(
Sing
6
)
|x7 ∈
x5
}
(proof)
Theorem
0fc47..
:
∀ x0 x1 x2 x3 x4 .
bbc71..
x0
x1
x2
x3
x4
0
0
0
=
binunion
(
f4b0e..
x0
x1
x2
x3
)
{
SetAdjoin
x6
(
Sing
5
)
|x6 ∈
x4
}
(proof)
Theorem
3463c..
:
∀ x0 x1 x2 x3 .
bbc71..
x0
x1
x2
x3
0
0
0
0
=
f4b0e..
x0
x1
x2
x3
(proof)
Theorem
b6032..
:
∀ x0 .
8c189..
x0
⟶
1eb0a..
x0
(proof)