Search for blocks/addresses/...

Proofgold Asset

asset id
d8e5a7a079afafbffcc2e40a41e28b30b7698aff4d538c12c88d9ceb5fa0467c
asset hash
d823a866a70ac417d8c3d1b633c0cc44c0ba0f05d3c9a08c559c4a8101c8a8cb
bday / block
11767
tx
9c4aa..
preasset
doc published by PrEBh..
Param pack_bpack_b : ιCT2 ι
Definition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)x1 (pack_b x2 x3))x1 x0
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7x7 = x5 x6))
Param MagmaHomHom_struct_b : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 2cd8d..Hom_struct_b_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . MagmaHom (pack_b x0 x2) (pack_b x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0ap x4 (x2 x6 x7) = x3 (ap x4 x6) (ap x4 x7))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem 93a0d.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)x0 (pack_b 0 (λ x1 x2 . x1))MetaCat_initial_p x0 MagmaHom struct_id struct_comp (pack_b 0 (λ x1 x2 . x1)) (λ x1 . lam 0 (λ x2 . x2)) (proof)
Known pack_struct_b_Ipack_struct_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)struct_b (pack_b x0 x1)
Theorem e9785..MetaCat_struct_b_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p struct_b MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param ordsuccordsucc : ιι
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Known pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0
Known In_0_1In_0_1 : 01
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem dfc93.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)x0 (pack_b 1 (λ x1 x2 . x1))MetaCat_terminal_p x0 MagmaHom struct_id struct_comp (pack_b 1 (λ x1 x2 . x1)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (proof)
Theorem 021fd..MetaCat_struct_b_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p struct_b MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param unpack_b_iunpack_b_i : ι(ιCT2 ι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Definition 3d151.. := λ x0 x1 . unpack_b_i x0 (λ x2 . λ x3 : ι → ι → ι . unpack_b_i x1 (λ x4 . λ x5 : ι → ι → ι . pack_b (setprod x2 x4) (λ x6 x7 . lam 2 (λ x8 . If_i (x8 = 0) (x3 (ap x6 0) (ap x7 0)) (x5 (ap x6 1) (ap x7 1))))))
Known unpack_b_i_equnpack_b_i_eq : ∀ x0 : ι → (ι → ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_i (pack_b x1 x2) x0 = x0 x1 x2
Known pack_b_extpack_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)pack_b x0 x1 = pack_b x0 x2
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Theorem fe106.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . ∀ x3 : ι → ι → ι . 3d151.. (pack_b x0 x1) (pack_b x2 x3) = pack_b (setprod x0 x2) (λ x5 x6 . lam 2 (λ x7 . If_i (x7 = 0) (x1 (ap x5 0) (ap x6 0)) (x3 (ap x5 1) (ap x6 1)))) (proof)
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Theorem 2e4a2.. : ∀ x0 x1 . struct_b x0struct_b x1struct_b (3d151.. x0 x1) (proof)
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem 91c36.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)(∀ x1 x2 . x0 x1x0 x2x0 (3d151.. x1 x2))MetaCat_product_constr_p x0 MagmaHom struct_id struct_comp 3d151.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) (proof)
Theorem f7929.. : MetaCat_product_constr_p struct_b MagmaHom struct_id struct_comp 3d151.. (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 0)) (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 1)) (λ x0 x1 x2 x3 x4 . lam (ap x2 0) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (ap x3 x5) (ap x4 x5)))) (proof)
Theorem 150e3..MetaCat_struct_b_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p struct_b MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param SepSep : ι(ιο) → ι
Definition 32592.. := λ x0 x1 x2 x3 . unpack_b_i x0 (λ x4 . pack_b {x5 ∈ x4|ap x2 x5 = ap x3 x5})
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Theorem e123b.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 x3 x4 . 32592.. (pack_b x0 x1) x2 x3 x4 = pack_b {x6 ∈ x0|ap x3 x6 = ap x4 x6} x1 (proof)
Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Theorem d19d6.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)(∀ x1 x2 x3 x4 . x0 x1x0 x2MagmaHom x1 x2 x3MagmaHom x1 x2 x4x0 (32592.. x1 x2 x3 x4))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 MagmaHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Theorem c368b..MetaCat_struct_b_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p struct_b MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known c55c1..MetaCat_struct_b : MetaCat struct_b MagmaHom struct_id struct_comp
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Theorem a238a..MetaCat_struct_b_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p struct_b MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)