Search for blocks/addresses/...

Proofgold Asset

asset id
254e66d5d25ab4a1dbb4c7e5ea904b8725b30cc1f4237623afc54975b898e45c
asset hash
dbd96ffe6f5f846db4d55a9bf9b960b8fa9c5e5a6bf8220aa1fa258f990d5e47
bday / block
20920
tx
dd8b9..
preasset
doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 16baa.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι → ι → ο . (∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6∀ x7 : ο . (x1 x3 x4 x5 x6x7)(x2 x3 x4 x5 x6x7)(x1 x5 x6 x3 x4x7)x7)(∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6x2 x3 x4 x5 x6x2 x5 x6 x3 x4)∀ x3 . x0 x3∀ x4 . x0 x4∀ x5 . x0 x5∀ x6 . x0 x6∀ x7 . x0 x7∀ x8 . x0 x8∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14not (x2 x3 x4 x5 x6)not (x2 x3 x4 x7 x8)not (x2 x3 x4 x9 x10)not (x2 x3 x4 x11 x12)not (x2 x3 x4 x13 x14)not (x2 x5 x6 x7 x8)not (x2 x5 x6 x9 x10)not (x2 x5 x6 x11 x12)not (x2 x5 x6 x13 x14)not (x2 x7 x8 x9 x10)not (x2 x7 x8 x11 x12)not (x2 x7 x8 x13 x14)not (x2 x9 x10 x11 x12)not (x2 x9 x10 x13 x14)not (x2 x11 x12 x13 x14)∀ x15 : ο . (∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24∀ x25 . x0 x25∀ x26 . x0 x26∀ x27 . x0 x27x1 x16 x17 x18 x19x1 x18 x19 x20 x21x1 x20 x21 x22 x23x1 x22 x23 x24 x25x1 x24 x25 x26 x27not (x2 x16 x17 x18 x19)not (x2 x16 x17 x20 x21)not (x2 x16 x17 x22 x23)not (x2 x16 x17 x24 x25)not (x2 x16 x17 x26 x27)not (x2 x18 x19 x20 x21)not (x2 x18 x19 x22 x23)not (x2 x18 x19 x24 x25)not (x2 x18 x19 x26 x27)not (x2 x20 x21 x22 x23)not (x2 x20 x21 x24 x25)not (x2 x20 x21 x26 x27)not (x2 x22 x23 x24 x25)not (x2 x22 x23 x26 x27)not (x2 x24 x25 x26 x27)(∀ x28 : ο . (x16 = x3x17 = x4x28)(x18 = x3x19 = x4x28)(x20 = x3x21 = x4x28)(x22 = x3x23 = x4x28)(x24 = x3x25 = x4x28)(x26 = x3x27 = x4x28)x28)x15)x15
Param apap : ιιι
Theorem 3c6b1.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x2)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x2 x10 x11)not (x8 x9 x2 x12 x13)not (x8 x9 x2 x14 x15)not (x8 x9 x2 x16 x17)not (x8 x9 x2 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False (proof)
Theorem f8a5d.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x3)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x3 x10 x11)not (x8 x9 x3 x12 x13)not (x8 x9 x3 x14 x15)not (x8 x9 x3 x16 x17)not (x8 x9 x3 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False (proof)
Theorem 37836.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x4)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x4 x10 x11)not (x8 x9 x4 x12 x13)not (x8 x9 x4 x14 x15)not (x8 x9 x4 x16 x17)not (x8 x9 x4 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False (proof)