Search for blocks/addresses/...
Proofgold Asset
asset id
254e66d5d25ab4a1dbb4c7e5ea904b8725b30cc1f4237623afc54975b898e45c
asset hash
dbd96ffe6f5f846db4d55a9bf9b960b8fa9c5e5a6bf8220aa1fa258f990d5e47
bday / block
20920
tx
dd8b9..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
16baa..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
∀ x7 : ο .
(
x1
x3
x4
x5
x6
⟶
x7
)
⟶
(
x2
x3
x4
x5
x6
⟶
x7
)
⟶
(
x1
x5
x6
x3
x4
⟶
x7
)
⟶
x7
)
⟶
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
x3
x4
x5
x6
⟶
x2
x5
x6
x3
x4
)
⟶
∀ x3 .
x0
x3
⟶
∀ x4 .
x0
x4
⟶
∀ x5 .
x0
x5
⟶
∀ x6 .
x0
x6
⟶
∀ x7 .
x0
x7
⟶
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
not
(
x2
x3
x4
x5
x6
)
⟶
not
(
x2
x3
x4
x7
x8
)
⟶
not
(
x2
x3
x4
x9
x10
)
⟶
not
(
x2
x3
x4
x11
x12
)
⟶
not
(
x2
x3
x4
x13
x14
)
⟶
not
(
x2
x5
x6
x7
x8
)
⟶
not
(
x2
x5
x6
x9
x10
)
⟶
not
(
x2
x5
x6
x11
x12
)
⟶
not
(
x2
x5
x6
x13
x14
)
⟶
not
(
x2
x7
x8
x9
x10
)
⟶
not
(
x2
x7
x8
x11
x12
)
⟶
not
(
x2
x7
x8
x13
x14
)
⟶
not
(
x2
x9
x10
x11
x12
)
⟶
not
(
x2
x9
x10
x13
x14
)
⟶
not
(
x2
x11
x12
x13
x14
)
⟶
∀ x15 : ο .
(
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
∀ x25 .
x0
x25
⟶
∀ x26 .
x0
x26
⟶
∀ x27 .
x0
x27
⟶
x1
x16
x17
x18
x19
⟶
x1
x18
x19
x20
x21
⟶
x1
x20
x21
x22
x23
⟶
x1
x22
x23
x24
x25
⟶
x1
x24
x25
x26
x27
⟶
not
(
x2
x16
x17
x18
x19
)
⟶
not
(
x2
x16
x17
x20
x21
)
⟶
not
(
x2
x16
x17
x22
x23
)
⟶
not
(
x2
x16
x17
x24
x25
)
⟶
not
(
x2
x16
x17
x26
x27
)
⟶
not
(
x2
x18
x19
x20
x21
)
⟶
not
(
x2
x18
x19
x22
x23
)
⟶
not
(
x2
x18
x19
x24
x25
)
⟶
not
(
x2
x18
x19
x26
x27
)
⟶
not
(
x2
x20
x21
x22
x23
)
⟶
not
(
x2
x20
x21
x24
x25
)
⟶
not
(
x2
x20
x21
x26
x27
)
⟶
not
(
x2
x22
x23
x24
x25
)
⟶
not
(
x2
x22
x23
x26
x27
)
⟶
not
(
x2
x24
x25
x26
x27
)
⟶
(
∀ x28 : ο .
(
x16
=
x3
⟶
x17
=
x4
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x28
)
⟶
x28
)
⟶
x15
)
⟶
x15
Param
ap
ap
:
ι
→
ι
→
ι
Theorem
3c6b1..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x2
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x2
x10
x11
)
⟶
not
(
x8
x9
x2
x12
x13
)
⟶
not
(
x8
x9
x2
x14
x15
)
⟶
not
(
x8
x9
x2
x16
x17
)
⟶
not
(
x8
x9
x2
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
(proof)
Theorem
f8a5d..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x3
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x3
x10
x11
)
⟶
not
(
x8
x9
x3
x12
x13
)
⟶
not
(
x8
x9
x3
x14
x15
)
⟶
not
(
x8
x9
x3
x16
x17
)
⟶
not
(
x8
x9
x3
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
(proof)
Theorem
37836..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 .
x0
x1
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
x0
(
ap
(
x7
x8
)
x9
)
)
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
ap
(
x7
x8
)
(
ap
(
x7
x8
)
x9
)
=
x9
)
⟶
(
∀ x8 .
x0
x8
⟶
ap
(
x7
x8
)
x1
=
x4
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 x10 x11 x12 .
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x8
x9
x10
x11
x12
⟶
x8
x9
(
ap
(
x7
x9
)
x10
)
x11
(
ap
(
x7
x11
)
x12
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x1
x10
x11
)
⟶
not
(
x8
x9
x1
x12
x13
)
⟶
not
(
x8
x9
x1
x14
x15
)
⟶
not
(
x8
x9
x1
x16
x17
)
⟶
not
(
x8
x9
x1
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
)
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
not
(
x8
x9
x4
x10
x11
)
⟶
not
(
x8
x9
x4
x12
x13
)
⟶
not
(
x8
x9
x4
x14
x15
)
⟶
not
(
x8
x9
x4
x16
x17
)
⟶
not
(
x8
x9
x4
x18
x19
)
⟶
not
(
x8
x10
x11
x12
x13
)
⟶
not
(
x8
x10
x11
x14
x15
)
⟶
not
(
x8
x10
x11
x16
x17
)
⟶
not
(
x8
x10
x11
x18
x19
)
⟶
not
(
x8
x12
x13
x14
x15
)
⟶
not
(
x8
x12
x13
x16
x17
)
⟶
not
(
x8
x12
x13
x18
x19
)
⟶
not
(
x8
x14
x15
x16
x17
)
⟶
not
(
x8
x14
x15
x18
x19
)
⟶
not
(
x8
x16
x17
x18
x19
)
⟶
False
(proof)