Search for blocks/addresses/...

Proofgold Asset

asset id
3d5ef43214e6805bdf872a048b55e9e3197edff78abb6cf001824884841217e0
asset hash
dbf47884d9b7cc320ef71236501158ad548e46cd76d5ae7b104b3a4d307b2899
bday / block
36137
tx
13248..
preasset
doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 02f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition c8b10.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (02f3e.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 7db3a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (c8b10.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)x0 x6 x9not (x0 x7 x9)x0 x8 x9x10)x10
Definition 60dbb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (7db3a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)not (x0 x1 x10)x0 x2 x10not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 59ef4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (60dbb.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)x0 x1 x11not (x0 x2 x11)not (x0 x3 x11)not (x0 x4 x11)not (x0 x5 x11)x0 x6 x11not (x0 x7 x11)not (x0 x8 x11)not (x0 x9 x11)x0 x10 x11x12)x12
Definition 9f2b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . ∀ x13 : ο . (59ef4.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11(x1 = x12∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x8 = x12∀ x14 : ο . x14)(x9 = x12∀ x14 : ο . x14)(x10 = x12∀ x14 : ο . x14)(x11 = x12∀ x14 : ο . x14)x0 x1 x12x0 x2 x12not (x0 x3 x12)not (x0 x4 x12)x0 x5 x12not (x0 x6 x12)not (x0 x7 x12)not (x0 x8 x12)not (x0 x9 x12)not (x0 x10 x12)not (x0 x11 x12)x13)x13
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 353c4.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x09f2b5.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16 (proof)