Search for blocks/addresses/...
Proofgold Asset
asset id
de927df28c188d71ddd0b9fd7f9b324315aa822fa1471ff90f9e3b004b479d55
asset hash
ad6bd3082c37abc65ad0ae3c61d155cfdd8e0b7577d5278d0b4a05f3cc2324f8
bday / block
48172
tx
5789d..
preasset
doc published by
PrGM6..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
9c595..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
(
x0
x6
x10
⟶
x0
x1
x10
⟶
x0
x6
x9
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x1
x11
⟶
x0
x1
x10
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x2
x11
⟶
x0
x2
x10
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x11
⟶
x0
x4
x10
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x1
x12
⟶
x0
x1
x10
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x6
x13
⟶
x0
x1
x13
⟶
x0
x6
x9
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x2
x13
⟶
x0
x2
x11
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x13
⟶
x0
x4
x11
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x3
x14
⟶
x0
x4
x12
⟶
x0
x3
x12
⟶
False
)
⟶
(
x0
x2
x14
⟶
x0
x2
x12
⟶
x0
x2
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x4
x12
⟶
x0
x4
x9
⟶
False
)
⟶
(
x0
x4
x14
⟶
x0
x3
x14
⟶
x0
x4
x13
⟶
x0
x3
x13
⟶
False
)
⟶
(
x0
x1
x14
⟶
x0
x1
x13
⟶
x0
x1
x9
⟶
False
)
⟶
(
x0
x6
x15
⟶
x0
x1
x15
⟶
x0
x6
x10
⟶
x0
x1
x10
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x3
x15
⟶
x0
x4
x11
⟶
x0
x3
x11
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x11
⟶
x0
x2
x11
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x11
⟶
x0
x2
x10
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x11
⟶
x0
x3
x10
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x11
⟶
x0
x4
x10
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x12
⟶
x0
x2
x12
⟶
False
)
⟶
(
x0
x6
x15
⟶
x0
x1
x15
⟶
x0
x6
x13
⟶
x0
x1
x13
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x13
⟶
x0
x2
x11
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x13
⟶
x0
x3
x11
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x13
⟶
x0
x4
x11
⟶
False
)
⟶
(
x0
x5
x15
⟶
x0
x2
x15
⟶
x0
x5
x14
⟶
x0
x2
x14
⟶
False
)
⟶
(
x0
x2
x15
⟶
x0
x2
x14
⟶
x0
x2
x12
⟶
False
)
⟶
(
x0
x3
x15
⟶
x0
x3
x14
⟶
x0
x3
x12
⟶
False
)
⟶
(
x0
x4
x15
⟶
x0
x4
x14
⟶
x0
x4
x12
⟶
False
)
⟶
(
not
(
x0
x3
x9
)
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x1
x9
)
⟶
False
)
⟶
(
not
(
x0
x3
x12
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x4
x12
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x5
x12
)
⟶
not
(
x0
x1
x12
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
not
(
x0
x4
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
not
(
x0
x3
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x4
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x6
x13
)
⟶
not
(
x0
x2
x13
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x2
x10
)
⟶
False
)
⟶
(
not
(
x0
x2
x13
)
⟶
not
(
x0
x1
x13
)
⟶
not
(
x0
x2
x12
)
⟶
not
(
x0
x1
x12
)
⟶
False
)
⟶
(
not
(
x0
x3
x14
)
⟶
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
False
)
⟶
(
not
(
x0
x4
x14
)
⟶
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
False
)
⟶
(
not
(
x0
x2
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x3
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x5
x14
)
⟶
not
(
x0
x1
x14
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x1
x11
)
⟶
False
)
⟶
(
not
(
x0
x4
x15
)
⟶
not
(
x0
x2
x15
)
⟶
not
(
x0
x1
x15
)
⟶
False
)
⟶
(
not
(
x0
x5
x15
)
⟶
not
(
x0
x3
x15
)
⟶
not
(
x0
x1
x15
)
⟶
False
)
⟶
(
not
(
x0
x3
x15
)
⟶
not
(
x0
x2
x15
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
(
not
(
x0
x6
x15
)
⟶
not
(
x0
x4
x15
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x4
x9
)
⟶
False
)
⟶
(
x0
x1
x11
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x1
x12
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x1
x13
⟶
not
(
x0
x1
x10
)
⟶
False
)
⟶
(
x0
x2
x9
⟶
not
(
x0
x1
x9
)
⟶
False
)
⟶
(
x0
x3
x9
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
(
not
(
x0
x1
x11
)
⟶
not
(
x0
x1
x12
)
⟶
x0
x1
x14
⟶
not
(
x0
x1
x13
)
⟶
False
)
⟶
(
x0
x1
x9
⟶
x0
x1
x15
⟶
x0
x3
x15
⟶
not
(
x0
x2
x9
)
⟶
False
)
⟶
False
...